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1 Introduction

1.1 What is Statistics?

Statistics is concerned with the process of finding out about

real phenomena by collecting and making sense of data. Its

focus is on extracting meaningful patterns from the variation

which is always present in the data. An important feature is the

quantification of uncertainty so that we can make firm decisions

and yet know how likely we are to be right.

1.1.1 Problems and Questions

Statistical methods are applied in an enormous diversity of prob-

lems in such fields as:

• Agriculture (which varieties grow best?)

• Genetics, Biology (selecting new varieties, species)

• Economics (how are the living standards changing?)

• Market Research (comparison of advertising campaigns)

• Education (what is the best way to teach small children

reading?)

• Environmental Studies (do strong electric or magnetic fields

induce higher cancer rates?)
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• Meteorology (is global warming a reality?)

• Medicine (which drug is best?)

• Psychology (how are shyness and loneliness related?)

• Social Science (comparison of people’s reaction to different

stimuli)

Questions which arise in an investigation should be posed in non-

statistical terms to keep subject matter priorities first; ”trans-

lating” these questions into the language of statistics usually

means to answer the following:

- What should I measure?

- How should I measure it?

1.2 Ideas of Statistical modelling

In this section we are going to discuss some of the ideas of Sta-

tistical Modelling. We start with a real life problem. We think

about what to measure and how to measure it. We decide how

to collect some data. This may be via a survey, an experi-

ment or carrying out an observational study. We have to design

the method of data collection. For example by thinking care-

fully about questionnaire wording or in what way we decide ex-

perimental units receive different treatments or deciding which
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variables to measure. We should also think of an appropriate

statistical model for our data. This will often be of the form

Observed data = f(x, θ) + error,

where x are variables we have measured and θ are parameters of

our model. Data often exhibit great variability. The relationship

we are assuming here is NOT deterministic. That is why the

“error” term is there. We usually make some assumptions about

the error term but we should use our data to check if those

assumptions seem justified. If not we should go back and revise

our model.

Statistical model building is an iterative process. we entertain

a tentative model but we are ready to revise it if necessary. Only

when we are happy with our model should we stop. We can then

use our model, sometimes to understand our current set of data,

sometimes to help us predict what may happen in the future.

We must be ready to translate what the model is telling us

statistically to the client with the real life problem.

1.3 Populations and Samples

When we carry out a statistical investigation we want to find

out about a population.
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Definition 1 A population is the collection of items under dis-

cussion. It may be finite or infinite; it may be real or hypothet-

ical.

Sometimes although we have a target population in mind the

study population we can actually find out information about may

be different.

We are interested in measuring one or more variables for the

members of the population but to record observations for every-

one would be costly. The government carries out such a census

of the population every ten years but also carries out regular

surveys based on samples of a few thousand.

Definition 2 A sample is a subset of a population.

The sample should be chosen to be representative of the pop-

ulation because we usually want to draw conclusions or infer-

ences about the population based on the sample. Samples will

vary and the question of whether our sample is compatible with

hypotheses we may have about the population will be a large

concern in this course.

We will not concern ourselves much with the mechanics of

how the sample is chosen, this is a topic for the course Samples,

Surveys and Simulation which some of you may be doing or may
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do next year. But the following examples give you some idea of

the sorts of problems:

1. A city engineer wants to estimate the average weekly water

consumption for single-family dwellings in the city.

The population is single-family dwellings in the city. The

variable we want to measure is water consumption. To col-

lect a sample if the dwellings have water meters it might be

best to get lists of dwellings and annual usage directly from

the water company. If not then the local authority should

have lists of addresses which can be sampled from. Note we

should collect data through the year as water consumption

will be seasonal.

2. A political scientist wants to determine if a majority of

voters favour an elected House of Lords.

The population is voters in the UK. Electoral rolls provide

a list of those eligible to vote. What we want to measure

is their opinion on this issue using a neutral question. (It

would be easy to bias the response by asking a leading

question.) We could choose a sample using the electoral

roll and then ask the question by post, on the telephone or

face to face but all these methods have problems of non-
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response and/or cost.

3. A medical scientist wants to estimate the average length of

time until the recurrence of a certain disease.

The population is people who are suffering from this disease

or have done in the past. What we want to measure are

the dates of the last bout of disease and the new bout of

disease. We could take a sample of patients suffering the

disease now and follow them until they have another bout.

This may be too slow if the disease doesn’t recur often.

Alternatively we could use medical records of people who

suffered the disease in one or more hospitals but records

can be wrong and there may be biases introduced.

4. An electrical engineer wants to determine if the average

length of life of transistors of a certain type is greater than

5000 hours.

The population is transistors of this type. We want to

record the length of time to failure by putting a sample of

transistors on test and recording when they fail. Note that

for such experiments where the items under test are very

reliable it may be necessary to use an “accelerated” test

where we subject the items to higher currents than usual.
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In other parts of the course we may not emphasize the un-

derlying population or exactly how we collect a sample but re-

member these questions have had to be considered.
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2 Exploring Univariate Data

A good picture is worth more than a thousand words!

We examine the collected data to get a feel for they main messages and

any surprising features, before attempting to answer any formal questions.

This is the exploratory stage of data analysis.

2.1 Types of variables

There are two major kinds of variables:

1. Quantitative Variables (measurements and counts)

• continuous (such as heights, weights, temperatures);

their values are often real numbers; there are few repeated values;

• discrete (counts, such as numbers of faulty parts, numbers of tele-

phone calls etc); their values are usually integers; there may be

many repeated values.

2. Qualitative Variables (factors, class variables); these variables classify

objects into groups.

• categorical (such as methods of transport to College); there is no

sense of order;

• ordinal (such as income classified as high, medium or low); there

is natural order for the values of the variable.

2.2 Frequency table

A sample of each kind of variable can be summarized in a so called frequency

table or relative frequency table. Such a table is often a basis for various

graphical data representations. The elements of the table are values of:

• Class:

– for a quantitative variable - an interval, part of the range of the

sample, usually ordered and of equal length (class interval);
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– for a qualitative variable - often the value of the variable.

• Frequency: the number of values which fall into a class.

• Relative Frequency = (frequency/sample size).

• Cumulative Frequency (Relative Frequency) at x∗: it is the sum of the

frequencies (relative frequencies) for x ≤ x∗

value frequency rel. freq.

1 165 34.52%

2 154 32.22%

3 112 23.43%

4 47 9.83%

Total 478 100%

Table 2.1 Frequency and relative frequency table for ‘kids at school’ exam-

ple, variable ’sport’.

class frequency rel. freq. cum. rel. freq.

[b0, b1) n1
n1

n
n1

n

[b1, b2) n2
n2

n
n1+n2

n
...

...
...

...

[bk−1, bk) nk
nk

n
1

Table 2.2 Relative frequency and cumulative relative frequency table for

values of a continuous variable.

2.3 Simple plots

2.3.1 Dot Plots

The simplest type of plot we can do is to plot a batch of numbers on a scale,

stacking the same values vertically one above the other.
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Dotplot: C1

. :..

. .... .. . . ..::::::. : . . . ...:.

-----+---------+---------+---------+---------+---------+-C1

32.0 34.0 36.0 38.0 40.0 42.0

Dot plots display the distances between individual points, so they are

good for showing features such as clusters of points, gaps and outliers. Good

for a sample of small size, e.g., n ≤ 20.

2.3.2 Stem-and-Leaf Plots

Stem-and-Leaf plots are closely related to dot plots but with the data grouped

in a way that retains much, and often all, of the numerical information.

They are built from the values of the data themselves. Good for a sample of

medium size, e.g., 15 ≤ n ≤ 150.

Each number is split into two parts:

a | b

↑ ↑
stem leaf

where the leaf is a single digit.

Stem shows a class, the number of leaves for a particular stem (class) shows

the frequency, the span of the leaves’ values indicate the class interval. You

can lengthen the plot by splitting the stems or shorten the plot by rounding

numbers.

Stem-and-Leaf Display: C1

Stem-and-leaf of C1 N = 40

Leaf Unit = 0.10
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1 31 8

4 32 579

7 33 189

8 34 8

9 35 5

20 36 02334567899

20 37 00112334699

9 38 5

8 39 09

6 40 357

3 41 002

2.3.3 Histograms

A histogram is a pictorial form of the frequency table, most

useful for large data sets of a continuous variable. It is a set

of boxes, whose number (number of classes), width (class in-

terval) and height determine the shape of the histogram. The

box’s area represents the frequency, so that the total area of all

boxes is equal to the total number of observations, resembling

the property of a probability density function.
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Interpreting Stem-and-Leaf Plots and Histograms

• Outliers: the observations which are well away from the

main body of the data; we should look more closely at

such observations to see why they are different. Are they

mistakes or did something unusual happen?

• Number of peaks (modes): the mode represents the most

popular value; the presence of several modes usually indi-

cates that there are several distinct groups in the data.

• Shape of the distribution: the plot can appear to be close

to symmetry, or it can show moderate or extreme skewness.

• Central values and spread: we note where the data appear
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to be centered, how many modes are in the plot and where,

and how spread out the data are.

• Abrupt changes: these need special attention as they may

indicate some mistakes in the data or some problems com-

ing from a wrongly executed experiment or data collection.

2.3.4 Bar Chart

A bar chart representing frequencies differs from a histogram in

that the rectangles are not joined up. This visually emphasizes

the discreteness of the variable; each rectangle represents a sin-

gle value.

There may be various kinds of bar charts indicating other nu-

merical measures of the sample for all sample categories.

2.3.5 Pie Chart

The pie chart displays a distribution of a variable using segments

of a circle as frequencies. It is useful for presenting qualitative

data sets.

2.4 Numerical Summaries of Continuous Variables

2.4.1 Locating the Centre of the Data

Two main measures of centre are:

• Mean: the average value of the sample, denoted by x̄;

x̄ =
1

n

n∑
i=1

xi =
1

n

k∑
j=1

njxj, (2.1)
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where nj denotes the frequency of xj. If, we have a fre-

quency table with class intervals available only, not all ob-

servations, then xj in the equation denotes the middle of

the interval.

• Median: the middle value of the ordered data set, denoted

by Med; if

x(1) < x(2) < . . . < x(n) (2.2)

denotes the ordered data set, then

Med =

{
x(n+1

2 ) if n is odd
1
2(x(n

2 ) + x(n
2 +1)) if n is even.

(2.3)

• Mode: the value with the highest frequency.

2.4.2 The Five-Number Summary

The five-number summary indicates the centre and the spread

of the sample. It divides the ordered sample x(1) < x(2) < . . . <

x(n) into four sections; the five numbers are the borders of the

sections. The length of the sections tell us about the spread of

the sample. The numbers are:

• Minimum value, Min = x(1);

• Lower Quartile denoted by Q1, which ‘cuts off’ a quarter of

the ordered data;

• Median, Med, also denoted by Q2;

• Upper Quartile denoted by Q3, which ‘cuts off’ three quar-

ters of the ordered data;
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• Maximum value, Max = x(n).

Quartiles are calculated in the same way as the median: Q1 is

the median of the ‘lower’ half of the ordered sample, Q3 is the

median of the ‘upper’ half of the ordered sample.

For calculation purposes

Q1 = x(n+1
4 )

and

Q3 = x( 3(n+1)
4 )

.

2.5 Measuring the Spread of the data

The following two measures are simple functions of some of the

’five numbers’:

• the Range

R = Max − Min; (2.4)

• the Interquartile Range

IQR = Q3 − Q1. (2.5)

Another measure of spread is the Variance. It is the mean of

squared distances of the sample values from their average. The

square root of the variance is called The Sample Standard De-

viation, denoted by s:

s =

√√√√ 1

n − 1

n∑
i=1

(xi − x̄)2 =

√√√√ 1

n − 1

k∑
j=1

nj(xj − x̄)2. (2.6)
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2.5.1 Pictorial Representation of The Five-Number Summary

Boxplots summarize information about the shape, dispersion,

and center of your data. They can also help to spot outliers.

• The left edge of the box represents the first quartile Q1,

while the right edge represents the third quartile Q3. Thus

the box portion of the plot represents the interquartile

range IQR, or the middle 50% of the observations.

• The line drawn through the box represents the median of

the data.

• The lines extending from the box are called whiskers. The

whiskers extend outward to indicate the lowest and highest

values in the data set (excluding outliers).

• Extreme values, or outliers, are represented by dots. A

value is considered an outlier if it is outside of the box

(greater than Q3 or less than Q1) by more than 1.5 times

the IQR.

The boxplot is useful to assess the symmetry of the data:

• If the data are fairly symmetric, the median line will be

roughly in the middle of the IQR box and the whiskers

will be similar in length.

• If the data are skewed, the median may not fall in the

middle of the IQR box, and one whisker will probably be

noticeably longer than the other.
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2.6 Skewness

The following relations indicate skewness or symmetry:

• Q3 − Q2 > Q2 − Q1 and x̄ > Med indicate positive skew;

• Q3 − Q2 < Q2 − Q1 and x̄ < Med indicate negative skew;

• Q3 − Q2 = Q2 − Q1 and x̄ = Med indicate symmetry.

The measure of skewness is based on the third sample moment

about the mean

m3 =
1

n − 1

n∑
i=1

(xi − x̄)3.

This is affected by the units we measure x in. Hence, a dimen-

sionless form is used, called the coefficient of skewness:

coeff. of skew =
m3

s3 .

A value more than or less than zero indicates skewness in the

data. But a zero value does not necessarily indicate symmetry.
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2.7 The Effect of Shift and Scale on Sample Measures

Denote by

{x1, x2, . . . , xn}

a sample from a population X.

The Effect of Shift

Let

yi = xi + a

for i = 1, . . . , n and for some constant a. Then

• ȳ = 1
n

∑n
i=1 yi = 1

n

∑n
i=1(xi + a) = 1

n

∑n
i=1 xi + 1

n

∑n
i=1 a =

x̄ + a;

• Qj(y) = Qj(x) + a, j = 1, 2, 3;

• Q3(y)−Q1(y) = (Q3(x)+a)−(Q1(x)+a) = Q3(x)−Q1(x);

• s2
y = 1

n−1

∑n
i=1(yi − ȳ)2 = 1

n−1

∑n
i=1((xi + a) − (x̄ + a))2 =

1
n−1

∑n
i=1(xi − x̄)2 = s2

x.

Therefore, shifting the data shifts the measures of centre (mean,

median and quartiles) but it does not affect the measures of

spread (IQR and s2). Also, you can easily show that the coef-

ficient of skewness is not affected by a shift of the data.

The Effect of Scale

In a similar way multiplying values by a positive constant re-

sults in the measures of centre also being multiplied by that

constant. The IQR and standard deviation s are multiplied by

the constant and the variance s2 is multiplied by the square of

the constant. The coefficient of skewness is unaffected. Multi-

plying by a negative constant is similar but the IQR and s are
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multiplied by the modulus of the constant and the sign of the

coefficient of skewness is changed.

Check these results for yourselves as an exercise.
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3 Exploratory tools for Relationships

Let

{(x1, y1), (x2, y2), . . . , (xn, yn)}
denote a bivariate sample from a population (X,Y ). Either of X and Y can

be qualitative (continuous or discrete) or quantitative (categorical or ordinal)

variable. Which sort of numeric or pictorial tools we use depends on what

kind of variables we examine.

3.1 Two Quantitative variables

The main graphical tools for comparing two quantitative variables are plots.

Most common are:

• Scatter Plot

A scatter plot displays points at the Cartesian coordinates: one vari-

able provides the coordinates for the vertical y-axis, and one variable

provides the coordinates for the horizontal x-axis. The scatter plot

displays symbols for the data points.

• Marginal Plot

A marginal plot is a scatter plot with graphs in the margins of the

x- and/or y-axes that show the sample marginal distributions of the

bivariate data. You can choose to have histograms, boxplots or dotplots

as the marginal plots.

All of these give us slightly different information and each might be useful.

We can see from a plot if there seems to be some kind of relationship be-

tween the two variables. The simplest relationship is linear. The data points

lying along a straight line suggest a linear relationship; the more scatter there

is about the ’best fit’ line, the less strong is the linear relationship.

A numerical measure of degree of linear association of two samples is the

sample covariance:

sxy =
1

n− 1

n∑
i=1

(xi − x̄)(yi − ȳ).
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However, it is the dimensionless sample correlation coefficient, usually de-

noted by r, which is usually used for measuring the association between x

and y:

r =
sxy√
s2

xs
2
y

.

The sample coefficient of correlation has the same properties as the popula-

tion coefficient of correlation ρ.

See the Probability I lecture notes.

Lemma 3.1

The sample correlation coefficient r takes values between -1 and 1. r = 1

means positive linear correlation of the bivariate data, r = −1 means nega-

tive linear correlation of the bivariate data.

Proof

Assume that x1, . . . , xn are not all identical, otherwise the variance of x would

be zero, similarly assume that y1, . . . , yn are not all identical.

Consider the following nonnegative function of a:

f(a) = 1
n−1

∑n
i=1((yi − ȳ)− a(xi − x̄))2 =

1
n−1

∑n
i=1((yi − ȳ)2 − 2a(xi − x̄)(yi − ȳ) + a2(xi − x̄)2) =

s2
y − 2asxy + a2s2

x ≥ 0

The last term is a quadratic function of a. It is nonnegative, so

∆ = (2sxy)
2 − 4s2

xs
2
y ≤ 0

since there must be two complex roots (∆ > 0) or a repeated root (∆ = 0).

This means

(2sxy)
2 ≤ 4s2

xs
2
y

or

r2 =
s2

xy

s2
xs

2
y

≤ 1.

Hence

−1 ≤ r ≤ 1.
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Furthermore, if r2 = 1 then ∆ = 0 and a0 = sxy

s2
x

is the repeated root of the

equation f(a) = 0. Then

1

n− 1

n∑
i=1

((yi − ȳ)− a(xi − x̄))2 =
1

n− 1

n∑
i=1

z2 = 0.

This can only occur if all the z terms in the summation are zero. Hence

yi = ȳ + a(xi − x̄)

for all i = 1, 2, . . . , n. So the points (xi, yi) lie on a straight line with slope

a. If r = 1, then sxy > 0 and so the slope of the line, a, is positive. When

r = −1, then the slope of the line is negative.

¤
Note that a correlation of zero does not imply there is no relationship

between the variables. It says there is no linear relationship. For example, a

set of data which has a quadratic relationship may have zero (or near zero)

correlation.

For calculation the following formula avoids rounding error. I will leave it

as an exercise to show that this is equivalent to the expression given above.

r =
n

∑
xiyi −

∑
xi

∑
yi√

[n
∑

x2
i − (

∑
xi)2][n

∑
y2

i − (
∑

yi)2]
.

3.2 Quantitative versus Qualitative variable

To see the relationship between two such variables it is useful to plot the

quantitative variable for each group of the qualitative variable against the

same scale and than compare groups. Dotplots, boxplots, stem-and leaf plots,

or histograms may be used for plotting depending on batch sizes. Dotplots

and boxplots are good when the number of groups is large.

3.3 Two Qualitative variables

We can cross-tabulate the variables to form a two-way table of counts. Rela-

tionships can be explored by plotting proportions calculated from the table.

Bar charts or pie charts may be used for each combination of the categories.
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A three dimensional picture may be used as a visual representation of the

two-way table.
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4 One Dimensional Random Variables and

Goodness of Fit Tests

In this chapter we will revise some of the material on discrete random vari-

ables and their distributions which you have seen in Probability I. We will

also consider the statistical question of deciding whether a sample of data

may reasonably be assumed to come from a particular discrete distribution.

First some revision:

Definition 4.1

If E is an experiment having sample space S, and X is a function that assigns

a real number X(e) to every outcome e ∈ S, then X(e) is called a random

variable (r.v.)

Definition 4.2

Let X denote a r.v. and x its particular value from the whole range of all

values of X, say RX . The probability of the event (X ≤ x) expressed as a

function of x:

FX(x) = PX(X ≤ x) (4.1)

is called the Cumulative Distribution Function (cdf) of the r.v. X.

Properties of cumulative distribution functions

• 0 ≤ FX(x) ≤ 1, −∞ < x < ∞

• limx→∞ FX(x) = 1

• limx→−∞ FX(x) = 0

• The function is nondecreasing.

That is if x1 ≤ x2 then FX(x1) ≤ FX(x2).

4.1 Discrete Random Variables

Values of a discrete r.v. are elements of a countable set {x1, x2, . . . , xi, . . .}.
We associate a number pX(xi) = PX(X = xi) with each outcome xi, i =

1, 2, . . ., such that:
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1. pX(xi) ≥ 0 for all i

2.
∑∞

i=1 pX(xi) = 1

Note that

FX(xi) = PX(X ≤ xi) =
∑
x≤xi

pX(x) (4.2)

pX(xi) = FX(xi)− FX(xi−1) (4.3)

The function pX is called the Probability Function of the random variable X,

and the collection of pairs

{(xi, pX(xi)), i = 1, 2, . . .} (4.4)

is called the Probability Distribution of X. The distribution is usually pre-

sented in either tabular, graphical or mathematical form.

Example 4.1

X ∼ Binomial(8, 0.4)

That is n = 8, and the probability of success p equals 0.4.

Mathematical form:

{(k, P (X = k) = nCkp
k(1− p)n−k ), k = 0, 1, 2, . . . 8} (4.5)

Tabular form:

k 0 1 2 3 4 5 6 7 8

P(X=k) 0.0168 0.0896 0.2090 0.2787 0.2322 0.1239 0.0413 0.0079 0.0007

P (X ≤ k) 0.0168 0.1064 0.3154 0.5941 0.8263 0.9502 0.9915 0.9993 1

Other important discrete distributions are:

• Bernoulli(p)

• Geometric(p)

• Hypergeometric(n,M, N)

• Poisson(λ)

For their properties see Probability I course lecture notes.
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4.2 Goodness of fit tests for discrete random variables

4.2.1 A straightforward example

Suppose we wish to test the hypothesis that a set of data follows a binomial

distribution.

For example suppose we throw three drawing pins and count the number

which land pin-up. We want to test the hypothesis that a drawing pin is

equally likely to land up or down. We do this 120 times and get the following

data

Ups 0 1 2 3

Observed frequency 10 35 54 21

Is there any evidence to suggest that the drawing pin is not equally likely

to land up or down?

Suppose it was equally likely. Then the number of ups in a single throw,

assuming independent trials, would have a binomial distribution with n = 3

and p = 1
2
. So writing Y as the number of ups we would have P [Y = 0] = 1

8
,

P [Y = 1] = 3
8

P [Y = 2] = 3
8

P [Y = 3] = 1
8
. Thus in 120 trials our expected

frequencies under a binomial model would be

Ups 0 1 2 3

Expected frequency 15 45 45 15

Now our observed frequencies are not the same as our expected frequen-

cies. But this might be due to random variation. We know a random variable

doesn’t always take its mean value. But how surprising is the amount of vari-

ation we have here?

We make use of a test statistic X2 defined as follows

X2 =
k∑

i=1

(Oi − Ei)
2

Ei

,

where Oi are the observed frequencies, Ei are the expected frequencies and

k is the number of classes, or values that Y can take.

Now it turns out that if we find the value of X2 for lots of samples for

which our hypothesis is true it has a particular distribution called a χ2 or
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chi-squared distribution. We can calculate the value of X2 for our sample.

If this value is big, i.e. it is in the right tail of the χ2 distribution we might

regard this as evidence that our hypothesis is false. (Note if the value of X2

was very small we might regard this as evidence that the agreement was “too

good” and that some cheating had been going on.)

In our example

X2 =
(10− 15)2

15
+

(35− 45)2

45
+

(54− 45)2

45
+

(21− 15)2

15

=
25

15
+

100

45
+

81

45
+

36

15

=
75 + 100 + 81 + 108

45

=
364

45
= 8.08

Now look at Table 7, p37 in the New Cambridge statistical tables. This

gives the distribution function of a χ2 random variable. It depends on a

parameter ν which is called the degrees of freedom. For our goodness of fit

test the value of ν is given by k − 1. So ν = 3. For 8.0 the distribution

function value is 0.9540. For 8.2 it is 0.9579. If we interpolate linearly we

will get

0.9540 + 0.08/0.20× (.9579− .9540) = .9556

Thus the area to the right of 8.08 is 1− 0.9556 = 0.0444.

This is quite a small value. It represents the probability of obtaining an

X2 value of 8.08 or more if we carry out this procedure repeatedly on samples

which actually do come from a binomial distribution with p = 0.5 It is called

the P value of the test. A P value of 0.0444 would be regarded by most

statisticians as moderate evidence against the hypothesis.

An alternative approach to testing is to make a decision to accept or

reject the hypothesis. This is done so that there is a fixed probability of

rejecting the hypothesis when it is true. This probability is often chosen as

0.05. (Note: there is no good reason for picking this value rather than some

other value.)

If we did choose 0.05 Table 8 shows us that for ν = 3 the corresponding

value of the χ2 distribution is 7.815. If the value of X2 ≤ 7.815 we accept the
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hypothesis if X2 > 7.815 we reject the hypothesis. As X2 = 8.08 we reject

the hypothesis. To make it clear we have chosen 0.05 as our probability of

rejecting the hypothesis when it is true, we say we reject the hypothesis at a

5% significance level. We call the value 7.815 the critical value.

4.2.2 Complicating factors

There are a couple of factors to complicate the goodness of fit test. Firstly

if any of the expected frequencies (Ei) are less than 5 then we must group

adjacent classes so that all expected frequencies are greater than 5. Secondly

if we need to estimate any parameters from the data then the formula for

the degrees of freedom is amended to read

ν = k − p− 1

where k is the number of classes and p is the number of parameters estimated

from the data.

We can illustrate both these ideas in the following example.

It is thought that the number of accidents per month at a junction follows

a Poisson distribution. The frequency of accidents in 120 months was as

follows

Accidents 0 1 2 3 4 5 6 7+

Observed frequency 41 40 22 10 6 0 1 0

To find the Poisson probabilities we need the mean µ. Since this isn’t

known we will have to estimate it from the data. A reasonable estimate is

the sample mean of the data. This is

0× 41 + 1× 40 + 2× 22 + · · ·+ 6× 1

120
= 1.2

Now using the Poisson formula

P [Y = y] =
e−µµy

y!

or Table 2 in New Cambridge Statistical Tables we can complete the proba-

bilities in the following table
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Accidents Probability Ei Oi

0 0.3012 36.14 41

1 0.3614 43.37 40

2 0.2169 26.03 22

3 0.0867 10.40 10

4 0.0261 3.13 6

5 0.0062 0.74 0

6+ 0.0015 0.18 1

Note that the probabilities have to add to one, so the last class is six or

more.

Now the last three expected frequencies are all less than 5. If we group

them together into a class 4+ the expected frequency will be 4.05, still less

than 5. So we group the last four classes into a class 3+ with expected

frequency 14.45 and observed frequency 17. We find X2 as before.

X2 =
(36.14− 41)2

36.14
+

(43.37− 40)2

43.37
+

(26.03− 22)2

26.03
+

(14.45− 17)2

14.45
= 0.65 + 0.26 + 0.62 + 0.45

= 1.98

Now after our grouping there are four classes so k = 4 and we estimated

one parameter, the mean, from the data so p = 1. So ν = 4 − 1 − 1 = 2.

Looking in Table 7 the distribution function for 1.9 is 0.6133 and for 2.0 is

0.6321. So the interpolated value for 1.98 is 0.6133 + 0.08/0.10 × (0.6321 −
0.6133) = 0.6283. Thus the P value is 1 − 0.6283 = 0.3717. Such a large

P value is regarded as showing no evidence against the hypothesis that the

data have a Poisson distribution.

Alternatively for a significance test at the 5% level the critical value is

5.991 from table 8 and as 1.98 is smaller than this value we accept the

hypothesis that the data have a Poisson distribution.

4.3 Continuous Random Variables

Values of a continuous r.v. are elements of an uncountable set, for example a

real interval. The c.d.f. of a continuous r.v. is a continuous, nondecreasing,

6



differentiable function. An interesting difference from a discrete r.v. is that

for δ > 0

PX(X = x) = limδ→0(FX(x + δ)− FX(x)) = 0

We define the Density Function of a continuous r.v. as:

fX(x) =
d

dx
FX(x) (4.6)

Hence

FX(x) =

∫ x

−∞
fX(t)dt (4.7)

Similarly to the properties of the probability distribution of a discrete r.v.

we have the following properties of the density function:

1. fX(x) ≥ 0 for all x ∈ RX

2.
∫

RX
fX(x)dx = 1

The probability of an event (X ∈ A), where A is an interval, is expressed as

an integral

PX(−∞ < X < a) =

∫ a

−∞
fX(x)dx = FX(a) (4.8)

or for a bounded interval

PX(b < X < c) =

∫ c

b

fX(x)dx = FX(c)− FX(b) (4.9)

Example 4.2 Normal Distribution N(µ, σ2)

The density function is given by:

fX(x) =
1

σ
√

2π
e−

1
2
(
(x−µ)

σ
)2 (4.10)

There are two parameters which tell us about the centre and spread of the

density curve: the expected value µ and the standard deviation σ.

We will return to the normal distribution in Chapter 6.

Other important continuous distributions are

• Uniform(a, b)

• Exponential(λ)
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See Probability II course lecture notes.

Note that all distributions you have come across depend on one or more

parameters, for example p, λ, µ, σ. These values are usually unknown and

their estimation is one of the important problems in statistical analysis.

4.3.1 A goodness of fit test for a continuous random variable

Consider the following example.

Traffic is passing freely along a road. The time interval between successive

vehicles is measured (in seconds) and recorded below.

Time interval 0-20 20-40 40-60 60-80 80-100 100-120 120+

No. of cars 54 28 12 10 4 2 0

Test whether an exponential distribution provides a good fit to these data.

We need to estimate the parameter λ of the exponential distribution.

Since λ−1 is the mean of the distribution it seems reasonable to put λ = 1/x̄.

(We will discuss this further when we look at estimation). Now the data

are presented as intervals so we will have to estimate the sample mean. It

is common to do this by pretending that all the values in an interval are

actually at the mid-point of the interval. We will do this whilst recognising

that for the exponential distribution, which is skewed, it is a bit questionable.

The calculation for the sample mean is given below.

Midpoint x Frequency f fx

10 54 540

30 28 840

50 12 600

70 10 700

90 4 360

110 2 220

110 3260

thus the estimated mean is 3260/110 = 29.6. Thus we test if the data are

from an exponential distribution with parameter λ = 1/29.6.
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We must calculate the probabilities of lying in the intervals given this

distribution.

P [X < 20] =

∫ 20

0

λe−λxdx

= 1− e−20λ

= 0.4912

P [20 < X < 40] =

∫ 40

20

λe−λxdx

= e−20λ − e−40λ

= 0.2499

Similarly

P [40 < X < 60] = e−40λ − e−60λ = 0.1272

P [60 < X < 80] = e−60λ − e−80λ = 0.0647

P [80 < X < 100] = e−80λ − e−100λ = 0.0329

P [100 < X] = e−100λ = 0.0341

Multiplying these probabilities by 110 we find the expected frequencies

as given in the table below.

Time interval 0-20 20-40 40-60 60-80 80-100 100+

Observed frequency 54 28 12 10 4 2

Expected frequency 54.03 27.49 13.99 7.12 3.62 3.75

We must merge the final two classes so that the expected values are greater

than 5. Thus for 80+ we have 6 observed and 7.37 expected.

We find

X2 =
∑ (O − E)2

E
= 1.71.

Now ν = 5 − 1 − 1 = 3 since after grouping there were 5 classes and we

estimated one parameter from the data. From Table 7 the P value is thus

1− 0.3653 = 0.6347 and there is no evidence against the hypothesis that the

data follows an exponential distribution.
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5 Contingency tables

As we mentioned in section 3.3 if our data take the form of two categorical

variables we form a contingency table. We are often interested in whether

there is some form of association or lack of independence between the two

variables. Exactly what form this association takes depends on the way we

collect the data.

For example consider the following:

Example 1 227 randomly selected males were classified by eye and hair

colour

Eye colour

Hair colour Brown Green/grey Blue Total

Black 10 24 8 42

Brown 16 41 26 83

Fair/Red 5 32 65 102

Total 31 97 99 227

Note that in this example we selected 227 males at random and then

classified them according to hair and eye colour. Apart from the grand total

of 227 none of the other entries in the table were fixed. We may ask if there

is an association, or lack of independence, between the two factors (at three

levels). Do the proportions (or probabilities) of the three eye colours differ

among the sub-populations comprising the three hair colours? Equivalently

do the proportions (or probabilities) of the three hair colours differ among

the three eye colours? This is a test of INDEPENDENCE.

Compare this with the following example.

Example 2 A survey of smoking habits in a sixth form sampled 50 boys and

40 girls at random and the frequencies were noted in the following table.

Smoking

None Light Heavy Total

Boys 16 20 14 50

Girls 24 10 6 40

Total 40 30 20 90

1



In this example we chose to sample 50 boys and 40 girls. Before we clas-

sified their smoking habits we knew that the row totals would be 50 and 40.

We want to know if there is a difference between the sexes. We are comparing

two distributions (over smoking habits) so the test is one of SIMILARITY.

The hypothesis we are testing is that the population proportions of boys and

girls in each smoking category are the same.

Again compare that with the following example

Example 3 In a study of migrant birds, nestlings were ringed in four differ-

ent locations A-D. One year later birds were recaptured at each location and

the number of ringed birds noted. The data were

A B C D Total

Recovered 30 75 24 31 160

Not recov. 150 225 63 202 640

Total 180 300 87 233 800

In this example the column totals were fixed. We want to know if there

is evidence for differences in the four recovery rates. We are comparing four

proportions so the test is one of HOMOGENEITY. The hypothesis is that

the proportion of recovered birds is the same for the four locations.

Now we have seen that the method of sampling is important and that

this determines the hypothesis that we want to test. However it turns out

that whatever the method of sampling the method we use to analyse the

contingency table is the same. As with goodness of fit problems we find

the expected frequencies under the hypothesis under test, calculate X2 and

compare this to an appropriate χ2 value.

Consider the hair and eye colour example. The null hypothesis is that

P (eye colour and hair colour) = P (eye colour)× P (hair colour).

We can estimate P (brown eyes), for example, by the number of people with

brown eyes divided by the total number of people (31/227). Similarly we can

estimate P (black hair) by the total number of people with black hair divided

by the total number of people (42/227). So if the hypothesis of indepen-

dence is true P (brown eyes and black hair) will be estimated by (31/227)×
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(42/227) and we would expect the number of people in our sample with

brown eyes and black hair to be 227 × (31/227) × (42/227). Similarly the

expected number of people in our sample with a particular combination of

hair colour and eye colour if the hypothesis of independence is true will be

Ek = n× Row total/n× Column total/n

=
Row total× Column total

overall total(n)

Using this rule the table of expected frequencies is as follows:

Eye colour

Hair colour Brown Green/grey Blue Total

Black 5.74 17.95 18.32 42

Brown 11.33 35.47 36.20 83

Fair/Red 13.93 43.59 44.48 102

Total 31 97 99 227

We calculate X2 as before as

X2 =
k∑

i=1

(Oi − Ei)
2

Ei

where the sum is over all the cells of the contingency table.

The number of degrees of freedom is

ν = (no. of rows− 1)(no. of columns− 1).

Given the row and column totals we only need to know the values of ν cells

in the table to determine the rest.

As before X2 ∼ χ2
ν under the null hypothesis of independence and a large

value of X2 gives evidence against the hypothesis.

Here X2 = 34.9 on ν = (3 − 1) × (3 − 1) = 4 degrees of freedom. From

table 7 we see that P (X2 < 25) = 0.9999 so the P value is certainly less than

0.0001 and there is overwhelming evidence against the hypothesis that hair

colour and eye colour are independent.

Consider now the smoking example. Since the row totals are fixed, under

the hypothesis of similarity the row proportions or probabilities are the same
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for each row. It follows that

Ek

Row total
=

Column total

n

or

Ek =
Row total× Column total

n

Using this rule the table of expected frequencies is as follows:

Smoking

None Light Heavy Total

Boys 22.22 16.67 11.11 50

Girls 17.78 13.33 8.89 40

Total 40 30 20 90

For the example we find that X2 = 7.11. The degrees of freedom is

(2− 1)(3− 1) = 2. From table 7 we get P (X2 < 7.0) = 0.9698 and P (X2 <

7.2) = .9727 thus P (X2 < 7.11) = 0.9698+(11/20)(.9727− .9698) = .9714 so

the P-value is .0286. Hence there is moderate evidence against the hypothesis

of similarity, moderate evidence that smoking habits differ between the boys

and girls.

Finally consider the bird ringing example. Since the column totals are

fixed, under the hypothesis of homogeneity the column proportions are the

same for each column. It follows that

Ek

Column total
=

Row total

n

or

Ek =
Row total× Column total

n

Using this rule the table of expected frequencies is as follows:

A B C D Total

Recovered 36.0 60.0 17.4 46.6 160

Not recov. 144.0 240.0 69.6 186.4 640

Total 180 300 87 233 800
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We find that X2 = 15.59. The degrees of freedom is (2−1)(4− 1) = 3. From

table 8 we get P (X2 > 12.84) = 0.005 and P (X2 > 16.27) = 0.001 thus the

P-value is between .001 and .005. Hence there is strong evidence against the

hypothesis of homogeneity, strong evidence that the probability of recovering

birds is not constant over the four locations.

As we saw with the goodness of fit test X2 will only have a well approx-

imated χ2 distribution if all the Ek > 5. It may be possible to group rows

or columns to achieve this if one of the variables is ordinal (e.g. smoking

habits) but if it both are categorical any such grouping is arbitrary. In the

case of contingency tables we will relax our condition to say that not more

than 20% of the cells of the table should have Ek < 5 and none should have

Ek < 1.

For 2× 2 tables we can find a formula for the value of X2 in terms of the

entries in the table. If the table is

Presence Absence Total

Group 1 a b a + b

Group 2 c d c + d

Total a + c b + d n

Then

X2 =
n(ad− bc)2

(a + b)(c + d)(a + c)(b + d)
.

Example 4 Two areas of heathland are examined; in the larger area 66

sampling units are examined and 58 of them contain a particular species

of heather, while in the smaller area 22 units are examined and 12 of these

contain that species. Is the species occurring at the same density over the

two areas?

The null hypothesis is that the proportion of units containing the species

is the same in the two areas. The 2× 2 table obtained from these data is

Presence Absence Total

Area 1 58 8 66

Area 2 12 10 22

Total 70 18 88
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The value of X2 according to the formula is

X2 =
88(58× 10− 8× 12)2

66× 22× 70× 18
= 11.26

From Table 8 we see the P-value is between .0005 and .001 so we have very

strong evidence against the null hypothesis.

For 2× 2 tables where any of the entries are fairly small we should apply

Yates’ correction. We do this by modifying the formula for X2 to

X2 =
∑ (|Oi − Ei| − 0.5)2

Ei

.

Consider the heathland example. The table of expected frequencies is

Presence Absence Total

Area 1 52.5 13.5 66

Area 2 17.5 4.5 22

Total 70 18 88

So using Yates’ correction we find X2 = 9.312 and the P-value is now between

.001 and .005. This is still strong evidence against the null hypothesis but

the value of X2 has reduced considerably and in another example might have

a more important effect.
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6 The normal distribution, the central limit

theorem and random samples

6.1 The normal distribution

We mentioned the normal (or Gaussian) distribution in Chapter 4. It has

density

fX(x) =
1

σ
√

2π
e−

1
2
(
(x−µ)

σ
)2 . (6.1)

The mean of the distribution is µ and the variance σ2, so the standard devi-

ation is σ.

Of special interest is the standard normal distribution which has mean 0

and variance (or standard deviation) 1. We often write the random variable

with a standard normal distribution as Z. This has density

φ(z) =
1√
2π

exp(−z2

2
)

and cumulative distribution function

Φ(z) =

∫ z

−∞

1√
2π

exp(−u2

2
)du.

This integral cannot be evaluated analytically but it can be solved numeri-

cally and is tabulated in The New Cambridge Statistical Tables. It is very

important that you can use these tables. Note that the standard normal

distribution is symmetric about zero. We use this fact often.

6.2 Central limit theorem

There are a number of results which tell us about the behaviour of sums or

means of sequences of random variables. We shall state some results without

proof.

Theorem 6.1 Law of Large Numbers

Suppose X1, X2, . . . are a sequence of independent and identically dis-

tributed random variables with finite means µ. Let Sn be the partial sums

Sn = X1 + X2 + · · ·+ Xn.
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Then Sn

n
converges in distribution to µ as n tends to infinity. This means

that

P (
Sn

n
≤ x) →

0 x < µ,

1 x ≥ µ.

We shall look at some illustrations of this in Practical 6.

The central limit theorem comes in many different versions. Here we shall

state, without proof, a simple version.

Theorem 6.2 Central Limit Theorem

If X1, . . . , Xn is a sequence of n independent random variables with

E[Xi] = µi, Var[Xi] = σ2
i

with all means and variances finite, and Y =
∑n

i=1 Xi then

Zn =
Y −

∑
µi√∑

σ2
i

∼
n→∞ N(0, 1)

that is Zn has an approximate standard normal distribution as n tends to

infinity.

Another way of describing this is to say that if Fn(z) is the cdf of Zn then

lim
n→∞

Fn(z)

Φ(z)
= 1

where Φ(z) denotes the cdf of a standard normal rv.

The following corollary is very useful.

Corollary 6.1 If X1, . . . , Xn is a sequence of independent identically dis-

tributed rvs with

E[Xi] = µ Var[Xi] = σ2

then

Zn =
X̄ − µ√

σ2/n
∼

n→∞ N(0, 1)
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This means we can approximate probabilities for X̄ when the sample size

is large whatever the distribution of Xi (so long as it has a finite mean and

variance), using the normal tables. For example

P (X̄ ≤ c) = P

(
X̄ − µ

σ/
√

n
≤ c− µ

σ/
√

n

)
= P

(
Z ≤

√
n(c− µ)

σ

)
= Φ

(√
n(c− µ)

σ

)
The following theorem and corollary tell us that the approximation above

is exact if the distribution of the random variables is normal to start with.

Theorem 6.3 Let X1, . . . , Xn be independent random variables and let Xi ∼
N(µi, σ

2
i ). Then the linear combination of the variables

Y = a0 +
n∑

i=1

aiXi

is also normally distributed and

Y ∼ N(µ, σ2),

where µ = a0 +
∑

aiµi and σ2 =
∑

a2
i σ

2
i .

Corollary 6.2 If Y = X̄ and Xi ∼ N(µ, σ2) then Y ∼ N(µ, σ2/n).

See Probability II for more details on these results.

6.3 Normal approximations to discrete random vari-

ables

Let W1, . . . ,Wn be a sequence of independent Bernoulli rvs with probability

of success p. Then we know that X =
∑

Wi has a binomial distribution with

parameters n and p and E[X] = np and Var[X] = npq where q = 1− p. By

the central limit theorem we have

Zn =
X − np
√

npq
∼

n→∞ N(0, 1)
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The normal approximation to the binomial is best when p is close to 0.5 and

n is large.

Note that when we approximate a discrete random variable X by a con-

tinuous one Y we know that P (X < x + 1) = P (X ≤ x) so we approximate

both by P (Y < x + 1
2
). This is the so-called “continuity correction”.

Another way of thinking of this is to note that we can calculate P (X = x)

but because of the nature of continuous distributions P (Y = x) = 0. Again

we would approximate P (X = x) by P (x− 1
2

< Y < x + 1
2
).

Example A fair coin is tossed 150 times. Find a suitable approximation to

the probabilities of the following events

(a) more than 70 heads

(b) fewer than 82 heads

(c) more than 72 but fewer than 79 heads.

Let X be the number of heads thrown, then X has a binomial distribution

with n = 150 and p = 1/2. As n is large and p moderate we may approx-

imate X by Y a normal random variable with mean np = 75 and variance

np(1− p) = 37.5.

(a) We require P (X > 70) but this is the same as P (X ≥ 71) so we approx-

imate by P (Y > 70.5). This is equal to

P (Z > (70.5− 75)/
√

37.5) ≈ P (Z > −0.735) = P (Z < 0.735) = 0.769

(b) We require P (X < 82) but this is the same as P (X ≤ 81) so we approx-

imate by P (Y < 81.5). This is equal to

P (Z < (81.5− 75)/
√

37.5) ≈ P (Z < 1.06) = 0.855

(c) We require P (72 < X < 79) which is the same as P (73 ≤ X ≤ 78) and

thus we approximate by (72.5 < Y < 78.5). This is approximately equal to

P (−0.408 < Z < 0.571) = 0.716− (1− .658) = 0.374

We may similarly approximate a Poisson random variable by a normal

one of the same mean and variance so long as this mean is moderately large.

We again have to use the continuity correction. The justification in terms of
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sums is because the sum of some Poisson random variables is also Poisson

with mean equal to the sum of the means.

Example A radioactive source emits particles at random at an average rate

of 36 per hour. Find an approximation to the probability that more than 40

particles are emitted in one hour.

Let X be the number of particles emitted in one hour. Then X has a

Poisson distribution with mean 36 and variance 36. We can approximate X

by Y which has a N(36, 36) distribution. We require P (X > 40). This is

approximately P (Y ≥ 40.5) or transforming to a standard normal random

variable by subtracting the mean and dividing by the standard deviation, we

have

P (Y ≥ 40.5) = P (Z ≥ 40.5− 36

6
)

= P (Z ≥ 0.75)

= 1− .7734 = 0.2266

6.4 Random samples

In this section I shall assume we are dealing with continuous random vari-

ables. The same results apply to discrete random variables and you can

translate by writing density functions as probability functions etc.

Definition 6.1 The random variables X1, . . . , Xn are said to be a random

sample of size n (from the population X) if X1, . . . , Xn are mutually indepen-

dent random variables with the same density function f(x), that is X1, . . . , Xn

are independent and identically distributed random variables.

Since the Xi’s are independent their joint density can be written as the

product of the common marginal densities

f(x1, . . . , xn) = f(x1) · · · f(xn) =
n∏

i=1

f(xi).

Any function of the random variables, e.g.

Y = T (X1, . . . , Xn)
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is also a random variable. The distribution of such functions is of importance

in statistics. The distribution of Y can usually be derived from the underlying

distribution of the Xi’s in the random sample. It is called the sampling

distribution of Y

Definition 6.2 Let X1, . . . , Xn be a random sample of size n from a pop-

ulation and let T (x1, . . . , xn) be a real valued function. Then the random

variable Y = T (X1, . . . , Xn) is called a statistic. The probability distribution

of a statistic Y is called the sampling distribution of Y .

Two statistics which are often used are

1. the sample mean

X̄ =
1

n

n∑
i=1

Xi

2. The sample variance

S2 =
1

n− 1

n∑
i=1

(Xi − X̄)2

Lemma 6.1 Let X1, . . . , Xn be a random sample from a population and let

g(x) be a function such that E[g(X1)] and Var[g(X1)] exist. Then

E

[
n∑

i=1

g(Xi)

]
= n E[g(X1)]

and

Var

[
n∑

i=1

g(Xi)

]
= nVar[g(X1)].

Proof

X1, . . . , Xn are independent and identically distributed so

E

[
n∑

i=1

g(Xi)

]
=

n∑
i=1

E[g(Xi)] = n E[g(X1)]
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Var

[
n∑

i=1

g(Xi)

]
= E

{[∑
g(Xi)− E[

∑
g(Xi)]

]2
}

= E

{[∑
{g(Xi)− E[g(Xi)]}

]2
}

= E
[∑

{g(Xi)− E[g(Xi)]}2
]

+ E

∑
i

∑
j i6=j

{g(Xi)− E[g(Xi)]}{g(Xj)− E[g(Xj)]}


=

∑
i

Var[g(Xi)] +
∑

i

∑
j i6=j

Cov[g(Xi), g(Xj)]

= nVar[g(X1)] +
∑

i

∑
j i6=j

Cov[g(Xi), g(Xj)]

but the Xi’s are independent so all the covariance terms are zero and the

result follows.

Theorem 6.4 Let X1, . . . , Xn be a random sample from a population with

mean µ and finite variance σ2. Then

(a) E[X̄] = µ,

(b) Var[X̄] = σ2/n,

(c) E[S2] = σ2.

Proof For (a)

E[X̄] = E[
1

n

n∑
i=1

Xi] =
1

n

n∑
i=1

E[Xi]

=
1

n

∑
µ =

1

n
nµ = µ.

For (b)

Var[X̄] = Var[
1

n

n∑
i=1

Xi] =
1

n2

n∑
i=1

Var[Xi]

=
1

n2

∑
σ2 =

1

n2
nσ2 =

σ2

n
.

For (c) first note that

σ2 = E[X2]− (E[X])2 = E[X2]− µ2
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so

E[X2] = σ2 + µ2.

Similarly
σ2

n
= E[X̄2]− (E[X̄])2 = E[X̄2]− µ2

so

E[X̄2] =
σ2

n
+ µ2.

Now

E[S2] = E

[
1

n− 1

∑
(Xi − X̄)2

]
=

1

n− 1
E

[∑
X2

i − nX̄2
]

=
1

n− 1

[
n E[X1]

2 − n E[X̄2]
]

=
1

n− 1

[
n(σ2 + µ2)− n(σ2/n + µ2)

]
=

1

n− 1

[
nσ2 − σ2

]
= σ2

Note that this means on average if we use S2 (with a divisor of n− 1) we

will obtain σ2.

Definition 6.3 A point estimator is any function T (X1, . . . , Xn) of a ran-

dom sample. We often write an estimator of the parameter θ as θ̂.

An estimator of θ is a function of random variables, so is itself a random

variable.

A value of the estimator for any realization x1, . . . , xn of the random

sample, that is T (x1, . . . , xn) is a real number and is called an estimate.

Definition 6.4 If E[θ̂] = θ we say the estimator is unbiased. This means

that the distribution of the random variable θ̂ should be centred about the true

value θ.

Definition 6.5 The bias of an estimator is defined as

Bias(θ̂) = E[θ̂]− θ.
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Thus the sample mean is an unbiased estimator of the population mean

and the sample variance is an unbiased estimator of the population variance.

6.5 Distribution of sample total

The total T of the values X measured in a sample of size n equals nX̄. It

follows that T has a distribution of the same form as X̄, that is a normal

distribution, exactly if X is normally distributed and approximately so if n

is large by the central limit theorem.

The mean and variance of T are:

E[T ] = E[nX̄] = n E[X̄] = nµ,

Var[T ] = Var[nX̄] = n2Var[X̄] = n2 × σ2/n = nσ2.

Example A charter aeroplane company is asked to carry regular loads of 100

sheep. The plane available for this work has a carrying capacity of 5000kg.

Records of the weights of about 1000 sheep which are typical of those that

might be carried show that the distribution of sheep weight has a mean of

45kg and a standard deviation of 3kg. Can the company take the order?

Let T be the total weight of 100 sheep. Then

E[T ] = nµ = 100× 45 = 4500,

Var[T ] = nσ2 = 100× 9 = 900.

Since n is large the distribution of T will be approximately normal. So

the probability that T > 5000 is

P

(
Z >

5000− 4500√
900

)
= P (Z > 16.7).

This probability is so small that tables do not give it. (Note P (Z > 5) =

3× 10−7). the company can safely take the order.

Example An employer has to interview 20 candidates for a job. His expe-

rience has been that he may treat the length of an interview as normally

distributed with mean 10 mins and standard deviation 3mins. He begins to

interview at 9.00. At what time should he ask for his coffee to be brought to
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him if he is to be 99% certain that he will have seen 50% of the candidates

by then?

What is the probability that he will finish the interviews by 13.00 if he

takes 15mins over coffee?

The length of an individual interview is N(10, 9). The total length of 10

interviews is N(100, 90). To determine the time t at which coffee should be

brought (after 100 interviews) we require

Φ

(
t− 100√

90

)
= 0.99.

From table 5
t− 100√

90
= 2.3263.

Therefore t = 100 + 2.3263×
√

90 = 122, so coffee should be brought at

9.00 hours + 122mins that is at 11.02.

The distribution of the total length of 20 interviews is N(200, 180). The

time available for interviews is 240-15 = 225 minutes. The probability of

finishing by 13.00 is

Φ

(
225− 200√

180

)
= Φ(1.8633) = 0.9688.
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7 Hypothesis testing - one sample tests

7.1 Introduction

Definition 7.1 A hypothesis is a statement about a population parameter.

Example A hypothesis might be that the mean age of students taking

MAS113X is 19 greater than years.

If it is not true what is the alternative hypothesis? Writing µ for the

mean age the two hypotheses are

H0 : µ ≤ 19.0 H1 : µ > 19.0

Definition 7.2 The two complementary hypotheses in a hypothesis testing

problem are called the null hypothesis and the alternative hypothesis. They

are denoted by H0 and H1, respectively.

If θ denotes a population parameter, the general format of the null and

alternative hypotheses are

H0 : θ ∈ Θ0 H1 : θ ∈ Θc
0

where Θ0 is a subset of the parameter space Θ and Θc
0 is its complement.

Thus in the age example, formally

Θ = (0,∞), Θ0 = (0, 19], Θc
0 = (19,∞).

Example A null hypothesis might be that the weight of jam in a jar is 1kg.

The alternative might be that the weight is not 1kg. Values less than 1kg

and greater than 1kg are both covered by our alternative hypothesis.

Formally

Θ = (0,∞), Θ0 = {1}, Θc
0 = (0,∞) \ {1}.

How do we verify a hypothesis H0? Suppose we have collected some data.

Do they support the null hypothesis or contradict it? We need a criterion,

based on the collected data, which will help us answer the question.
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Definition 7.3 A hypothesis test is a rule that specifies for which sample

values the decision is made to reject H0, i.e. accept H1, and for which sample

values not to reject H0.

Typically, a hypothesis test is specified in terms of a test statistic T (X1, . . . , Xn),

a function of a random sample.

For example, for the age of the class a test might specify that H0 is to be

rejected if a value of X̄ is greater than 19.5. This defines a rejection region

or critical region as

{(x1, . . . , xn) : x̄ > 19.5}
the set of sample points which give the value of the test statistic T (X1, . . . , Xn) =

X̄ bigger than 19.5.

The compliment of the rejection region is called the acceptance region.

Here it is

{(x1, . . . , xn) : x̄ ≤ 19.5}

7.2 Type I and Type II errors

The decision to reject or not to reject the null hypothesis is based on a test

statistic computed from values of a random sample. Hence such a decision

is subject to error because of sampling variation. Two kinds of error may be

made when testing hypotheses.

1. If the null hypothesis is rejected when it is true.

2. If the null hypothesis is not rejected when it is false.

H0 is true H0 is false

Not reject H0 No error Type II error

Reject H0 Type I error No error

We denote the probabilities of Type I and Type II errors by

α = P (type I error) = P (reject H0|H0 is true)

β = P (type II error) = P (not reject H0|H0 is false)
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We would like to have test procedures which make both kinds of errors

small. We define the power of the test as 1− β. Thus a test has high power

if the probability of rejecting a false null hypothesis is large. In this course

we shall concentrate on specifying α. The power can be used to compare two

tests with the same α to see which is more powerful (better). It can also be

used to decide how large a sample size should be used. Such problems will

be discussed in Fundamentals of Statistics II.

The probability of a type I error, α, is often called the significance level

of the test. It is controlled by the location of the rejection or critical region.

So it can be set as small as required. Often α is taken to be 0.05 or 0.01. Of

course if we choose a small α then β may be large.

7.3 Tests concerning the mean

7.3.1 Test for a mean when the variance is known

We are interested in testing the null hypothesis

H0 : µ = µ0.

We begin by assuming that the alternative hypothesis is H1 : µ 6= µ0.

Let X1, . . . , Xn be a random sample from a population X, and let

E[X] = µ Var[X] = σ2

where µ is unknown and σ2 is known.

There are two cases to consider. If the population X is normal then we

know that

X̄ ∼ N(µ, σ2/n).

If the population is not normal but X has finite mean and variance then

for n large

X̄
·∼ N(µ, σ2/n).

In either case we know that

Z =
X̄ − µ

σ/
√

n
∼ N(0, 1)
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exactly in case 1 and approximately in case 2.

If the null hypothesis is true, i.e. µ = µ0 then

Z =
X̄ − µ0

σ/
√

n
∼ N(0, 1)

Given a sample we can calculate the observed x̄ and since we know all the

other terms an observed value of z. If the null hypothesis is true z should be

close to zero. Large values of |z| would tend to contradict the hypothesis.

Suppose we find the value zα/2 such that

P (Z > zα/2) = α/2.

By the symmetry of the standard normal distribution

P (Z < −zα/2) = α/2.

If we set the rejection region as

{z : z < −zα/2 ∪ z > zα/2}

then the probability of a type I error is the probability that Z lies in the

rejection region when the null hypothesis is true and this is exactly α.

The rejection region, for this alternative hypothesis, consists of the two

tails of the standard normal distribution and for this reason we call it a

two-tailed test.

Note this test is often called a z-test.

Example

Drills being manufactured are supposed to have a mean length of 4cm.

From past experience we know the standard deviation is equal to 1cm and

the lengths are normally distributed. A random sample of 10 drills had a

mean of 4.5cm. Test the hypothesis that the mean is 4.0 with α = 0.05.

We have

H0 : µ = 4.0 versus H1 : µ 6= 4.0

We know that

X̄ ∼ N

(
µ,

1

10

)
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so if H0 is true

Z =
X̄ − 4√

1/10
∼ N(0, 1).

The observed value of Z is

4.5− 4√
1/10

= 1.58

For a 2 sided test with α = 0.05 the rejection region is {z : |z| > 1.96}. Since

z = 1.58 we do not reject H0 at the 5% level.

Suppose now our alternative is H1 : µ > µ0. Our null is H0 : µ ≤ µ0 but

we use the value least favourable to H0, i.e. µ0 as the assumed representative

value from H0.

Large values of X̄ will give evidence against H0, so our rejection region

is given by {z : z > zα} where P (Z > zα) = α.

Similarly for an alternative H1 : µ < µ0 the region will be {z : z < zα′}
and by symmetry zα′ = −zα.

Example An advertisement for a certain brand of cigarettes claimed that

on average there is no more than 18mg of nicotine per cigarette. A test of 12

cigarettes gave a sample mean of x̄ = 19.1. Assuming σ2 = 4 test this claim

with a significance level of α = 0.05.

We have

H0 : µ = 18.0 versus H1 : µ > 18.0

We know that

X̄ ∼ N

(
µ,

4

12

)

so if H0 is true

Z =
X̄ − 18√

1/3
∼ N(0, 1).

The observed value of Z is

19.1− 18.0√
1/3

= 1.9053

For a 1 sided test with α = 0.05 the rejection region is {z : z > 1.6449}.
Since z = 1.9053 we can reject H0 at the 5% level.

Note that if we had chosen α = 0.02 then zα = 2.0537 we we would fail

to reject H0 at the 2% significance level
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7.3.2 Test for a normal mean when variance is unknown

Let X1, . . . , Xn be a random sample from a N(µ, σ2) population. We now

assume the values of both µ and σ2 are unknown.

We want to test H0 : µ = µ0. When σ2 is known we have that

Z =
(X̄ − µ0)

√
n

σ
∼ N(0, 1).

When σ2 is unknown we estimate it by S2 the sample variance defined by

S2 =

∑
(Xi − X̄)2

n− 1
.

The distribution of this statistic is no longer standard normal. In fact

T =
(X̄ − µ0)

√
n

S
∼ tn−1

a student t distribution with n − 1 degrees of freedom. Note the degrees of

freedom is the same as the divisor in the sample variance.

Table 9 in New Cambridge Statistical Tables gives the distribution func-

tion of T and Table 10 gives the percentage points. A t distribution has

heavier tails than a normal distribution. A t with 1 degree of freedom is also

called a Cauchy distribution. As the degrees of freedom tends to infinity a t

distribution tends to a standard normal. We call the resulting test a t test

or one sample t test.

If the alternative hypothesis is H1 : µ 6= µ0 then I shall write the critical

region as {t : |t| > tn−1(α/2)}.
Example A pharmaceutical manufacturer is concerned about the impurity

concentration in batches of drug and is anxious that the mean impurity

doesn’t exceed 2.5%. It is known that impurity concentration follows a nor-

mal distribution. A random sample of 10 batches had the following concen-

trations

2.1 1.9 2.4 2.3 2.6

1.5 2.8 2.6 2.7 1.8

Test at a significance level α = 0.05 that the population mean concentration

is at most 2.5.
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Our null hypothesis is H0 : µ = 2.5 versus an alternative H1 : µ > 2.5.

The test statistic is

T =
(X̄ − 2.5)

√
n

S
∼ tn−1

if H0 is true.

Now x̄ = 2.27 and s2 = 0.1868 so the observed value of T is

t =
(2.27− 2.5)

√
10

.4322
= −1.683.

For α = 0.05 with 9 degrees of freedom the critical region is {t : t > 1.833}
and so we fail to reject H0 at the 5% significance level.

7.4 P values

We discussed the use of P values when we looked at goodness of fit tests.

They can be useful as a hypothesis test with a fixed significance level α does

not give any indication of the strength of evidence against the null hypothesis.

The P value depends on whether we have a one-sided or two-sided test.

Consider a one sided test of H0 : µ = µ0 versus H1 : µ > µ0. Assuming

the population variance is unknown so that we are using a t test the P value

is

P (T > tobs)

where tobs is the observed value of t.

For H1 : µ < µ0 the P value is P (T < tobs).

For a two sided test with H1 : µ 6= µ0 it is

P (|T | > |tobs|) = 2P (T > |tobs|).

In each case we can think of the P value as the probability of obtaining

a value of the test statistic more extreme than we did observe assuming that

H0 is true. What is regarded as more extreme depends on the alternative

hypothesis. If the P value is small that is evidence that H0 may not be true.

It is useful to have a scale of evidence to help us interpret the size of the

P value. There is no agreed scale but the following may be useful as a first

indication:
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P value Interpretation

P > 0.10 No evidence against H0

0.05 < P < 0.10 Weak evidence against H0

0.01 < P < 0.05 Moderate evidence against H0

0.001 < P < 0.01 Strong evidence against H0

P < 0.001 Very strong or overwhelming evidence against H0

Note that the P value is the smallest level of significance that would lead

to rejection of the null hypothesis.

7.5 Test of hypothesis on the variance

Let X1, . . . , Xn be a random sample from a population which is N(µ, σ2)

where µ and σ2 are unknown. We consider now how to test a hypothe-

sis about the population variance σ2. We shall present the results without

justification.

To test H0 : σ2 = σ2
0 versus H1 : σ2 6= σ2

0 we use the test statistic

W =
(n− 1)S2

σ2
0

∼ χ2
n−1

if H0 is true.

Note the χ2
ν distribution has mean ν.

Since the χ2
ν distribution is defined on (0,∞) and is skewed two-sided

rejection regions are more complicated than before. The rejection region is

{w : w > χ2
n−1(α/2) ∪ w < χ2

n−1(1− (α/2))}.

For example if α = 0.05 and n = 9 then from Table 8 we have

χ2
8(0.025) = 17.53 χ2

8(0.975) = 2.180

and we would only reject H0 at the 5% significance level if the observed value

of W was outside the interval [2.180, 17.53].

Similarly for a one-sided test, for example if H1 : σ2 > σ2
0 then we would

reject H0 at the α significance level if

w > χ2
n−1(α)
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Example It is important that the variance of the percentage impurity levels

of a chemical don’t exceed 4.0. A random sample of 20 consignments had a

sample variance of 5.62. Test the hypothesis that the population variance is

at most 4.0 at a 5% level of significance and find the P value.

Our null and alternative hypotheses are

H0 : σ2 = 4.0 H1 : σ2 > 4.0

The test statistic

W =
(n− 1)S2

4.0
∼ χ2

19

if H0 is true. The observed value of W is w = 19×5.62
4

= 26.695. From the

tables χ2
19(0.05) = 30.14. Since our observed value is less than this we fail to

reject H0 at the 5% significance level.

The P value is P (W > 26.695). Now from Table 7 with ν = 19 P (W <

26) = 0.8698 and P (W < 27) = 0.8953 so using linear interpolation

P (W < 26.695) ≈ 0.8698 + 0.695(.8953− .8698) = 0.8875.

Thus P (W > 26.695) = 1 − 0.8875 = 0.1125. Using our scale of evidence

there is no evidence against H0.

For a two sided alternative the P value is found by multiplying the cor-

responding P value by 2.

Example Take the data in the last example but suppose that we want

the variance to equal 4.0. Now from the tables χ2
19(0.025) = 32.85 and

χ2
19(0.975) = 8.907 and as our observed value lies between these value we fail

to reject H0. The P value is 2× 0.1125 = 0.225.

7.6 Test of hypothesis on a proportion

Suppose we have a random sample of size n consisting of observations from

a Bernoulli distribution with probability of success p. Then we know that

X =
∑n

i=1 Xi has a Binomial distribution with parameters n and p.

To test the hypothesis that p = p0 we can use the test statistic

Z =
X − np0√
np0(1− p0)

∼ N(0, 1)
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if H0 is true so long as n is large by the Central Limit Theorem. The rejection

region depends on the alternative hypothesis as before.

Example In a random sample of 180 voters, 75 expressed support for Univer-

sity top-up fees. Test the hypothesis that at least 50% of all voters support

the measure. Use a significance level of α = 0.05.

Our null and alternative hypotheses are

H0 : p = 0.5 H1 : p < 0.5

The test statistic

Z =
X − np0√
np0(1− p0)

∼ N(0, 1)

if H0 is true. The observed value of Z is

z =
75− 180× 0.5√
180× 0.5× 0.5

=
−15√

45
= −2.236

For a one-sided test at the 5% significance level the rejection region is {z :

z < −1.6449} and so we can reject H0 at the 5% level.

7.7 Confidence intervals

Often we may be asked to estimate the population mean µ rather than test

a hypothesis about it. Or we may have performed a test and found evidence

against the null hypothesis, casting doubt on our original hypothesised value.

We should give an estimate of uncertainty along with our best estimate of µ,

which is x̄, the sample mean.

One measure of uncertainty is the standard error of the mean, σ/
√

n if

σ2 is known or s/
√

n if it is not. Equivalently, but perhaps more usefully we

can give a confidence interval. This is derived as follows:

Assume that the variance σ2 is known. Using the result for the sampling

distribution of X̄ we know that

X̄ − µ

σ/
√

n
∼ N(0, 1)

it follows that

P

(
−1.96 ≤ X̄ − µ

σ/
√

n
≤ 1.96

)
= 0.95
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cross-multiplying, we get

P
(−1.96σ/

√
n ≤ X̄ − µ ≤ 1.96σ/

√
n
)

= 0.95

Rearranging, we have

P
(
X̄ − 1.96σ/

√
n ≤ µ ≤ X̄ + 1.96σ/

√
n
)

= 0.95

We can say that the random interval

(
X̄ − 1.96σ/

√
n, X̄ + 1.96σ/

√
n
)

has a probability of 0.95 of containing or covering the value of µ, that is,

95% of all samples will give intervals (calculated according to this formula)

which contain the true value of the population mean.

The corresponding interval with X̄ replaced by x̄ is called a 95% con-

fidence interval for µ. Note that the 95% refers to the random variables

X̄ ± 1.96σ/
√

n, since µ is not a random variable. Nevertheless a confidence

interval does give an interval estimate for µ which is more useful than the

point estimate x̄.

The confidence interval has another interpretation which shows its con-

nection with hypothesis tests. We saw in practicals 7 and 8 that a number of

different null hypotheses were consistent with a given sample. A 95% confi-

dence interval contains all those values for which the P value is greater than

or equal to 0.05 in a two sided test of the null hypothesis that the unknown

parameter takes that value.

Again there is nothing magic in 95% and 0.05. In general we can find a

100(1− α)% confidence interval and this relates to P values greater than or

equal to α. In general when σ2 is known the 100(1−α)% confidence interval

for µ is

x̄± zα/2σ/
√

n.

Example Drills being manufactured are supposed to have a mean length of

4cm. From past experience we know the standard deviation is equal to 1cm

and the lengths are normally distributed. A random sample of 10 drills had

a mean of 4.5cm. Find 95% and 99% confidence intervals for the population

mean.
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The 95% confidence interval is given by

x̄± 1.96σ/
√

n = 4.5± 1.96× 1√
10

= 4.5± 0.62

= (3.88, 5.12).

The 99% confidence interval is given by

x̄± 2.5758σ/
√

n = 4.5± 2.5758× 1√
10

= 4.5± 0.81

= (3.69, 5.31)

Note that this means we would fail to reject any µ ∈ (3.69, 5.31) at the

1% significance level.

When σ2 is unknown we replace it by S2 and the corresponding percentage

point of the tn−1 distribution. Thus a 100(1− α)% confidence interval for µ

is

x̄± tn−1(α/2)s/
√

n.

Example Drills being manufactured are supposed to have a mean length of

4cm. From past experience we know the lengths are normally distributed.

A random sample of 10 drills had a mean of 4.5cm and sample variance 1.2.

Find 95% and 99% confidence intervals for the population mean.

The 95% confidence interval is given by

x̄± 2.262S/
√

n = 4.5± 2.262×
√

1.2√
10

= 4.5± 0.78

= (3.72, 5.28).

The 99% confidence interval is given by

x̄± 3.25S/
√

n = 4.5± 3.25×
√

1.21√
10

= 4.5± 1.13

= (3.37, 5.63)
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A confidence interval for σ2 is(
(n− 1)s2

χ2
n−1(α/2)

,
(n− 1)s2

χ2
n−1(1− α/2)

)
.

Example Drills being manufactured are supposed to have a mean length of

4cm. From past experience we know the lengths are normally distributed.

A random sample of 10 drills had a mean of 4.5cm and sample variance 1.2.

Find 95% and 99% confidence intervals for the population variance.

The 95% confidence interval is given by
(

(n− 1)s2

19.02
,
(n− 1)s2

2.700

)
=

(
9× 1.2

19.02
,
9× 1.2

2.700

)

= (0.568, 4.000) .

The 99% confidence interval is given by
(

(n− 1)s2

23.59
,
(n− 1)s2

1.735

)
=

(
9× 1.2

23.59
,
9× 1.2

1.735

)

= (0.458, 6.225) .

7.8 A confidence interval for a Poisson mean

Suppose we have collected data from a Poisson distribution mean λ. As long

as the mean is large we can use the normal approximation to the Poisson to

give a confidence interval. A suggestion is that for λ ≥ 10 a 95% confidence

interval will give a reasonable result but for a 99% confidence interval we

should have λ ≥ 20.

Suppose n Poisson observations drawn at random from a Poisson distri-

bution of mean λ have sample mean r̄. Since the mean and variance of the

Poisson are both λ we have that

(r̄ − λ)√
λ/n

∼ N(0, 1).

An approximate 95% confidence interval could therefore be written as

r̄ ± 1.96

√
r̄

n
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replacing the λ in the square root by its estimate.

However we can do better than this. The 95% limits are found by requir-

ing that
|r̄ − λ|√

λ/n
≤ 1.96

Let us solve this inequality. We will write 1.96 as c and recognise that we

could replace 1.96 by the appropriate value for a 100(1 − α)% confidence

interval. To do this consider the corresponding equality

|r̄ − λ|√
λ/n

= c

square to give

n(r̄ − λ)2 = c2λ,

a quadratic in λ:

nλ2 − (2nr̄ + c2)λ + nr̄2 = 0.

The two roots of this quadratic will give the upper and lower confidence

limits for the true value of λ. The limits are

λ =
1

2n

[
2nr̄ + c2 ±

√
(2nr̄ + c2)2 − 4n2r̄2

]

= r̄ +
c2

2n
± c

2n

√
c2 + 4nr̄.

Example In a traffic survey on a motorway, the mean number of vehicles

passing per minute for 1 hour was 18. Find a 95% confidence interval for the

true mean rate of vehicles passing per minute.

We apply the result with c = 1.96. We have r̄ = 18 and n = 60. So the

confidence limits are

λ = 18 +
3.84

120
± 1.96

120

√
3.84 + 240× 18

= 18.032± 1.072

= (16.96, 19.10)

The limits using r̄ as the estimate of the variance are r̄ ± 1.96
√

r̄/n so

are 18 ± 1.96
√

0.30 = (16.93, 19.07). These are close to the better limits as

n is large.
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8 Hypothesis tests for two samples

In this chapter we consider examples with two samples. We might want to

test that two means are equal or two variances.

8.1 Two independent samples - the two sample t test

Consider the situation where we have two independent samples and we want

to test if they come from the same population. In particular if they have the

same mean. We shall use the following notation.

We assume that the first sample X1, . . . , Xn1 is of size n1 and is normally

distributed with mean µ1 and variance σ2. We shall denote the sample mean

and variance by X̄ and S2
1 . We assume that the second sample Y1, . . . , Yn2 is

of size n2 and is normally distributed with mean µ2 and variance σ2. We shall

denote the sample mean and variance by Ȳ and S2
2 . Note we are assuming

that the samples come from populations with the same variance.

We want to test the null hypothesis H0 : µ1 = µ2 against an alternative

which is often two sided H1 : µ1 6= µ2 but which could be one sided.

Because we are assuming the population variances are the same we esti-

mate the variance by what is called the pooled estimator of variance. This

is

S2
0 =

(n1 − 1)S2
1 + (n2 − 1)S2

2

n1 + n2 − 2
.

We showed in Coursework 6 that in these circumstances the pooled esti-

mator of variance is an unbiased estimator of σ2.

Note that if σ2 were known X̄ ∼ N(µ1, σ
2/n1) and Ȳ ∼ N(µ2, σ

2/n2) it

follows that

X̄ − Ȳ ∼ N

(
(µ1 − µ2), σ

2(
1

n1

+
1

n2

)

)

since the samples are assumed independent. Thus

Z =
(X̄ − Ȳ )− (µ1 − µ2)

σ
√

1/n1 + 1/n2

∼ N(0, 1)

and so if σ2 were known we could base a test of µ1 = µ2 on the test statistic

Z =
X̄ − Ȳ

σ
√

1/n1 + 1/n2

1



which would have a N(0, 1) distribution if H0 were true.

Since σ2 is unknown we replace it by the pooled estimator S2
0 and as

in the one sample case the distribution changes from a normal to a t. The

degrees of freedom are the same as the divisor in S2
0 , namely n1 + n2 − 2.

thus our test statistic is

T =
X̄ − Ȳ

S0

√
1/n1 + 1/n2

which has a tn1+n2−2 distribution if H0 is true.

Example 8.1 Two random samples were independently drawn from two pop-

ulations. The first sample of size 6 had mean 49.5 and variance 280.3 and

the second of size 5 had mean 64.4 and variance 310.3. Is there evidence to

indicate a difference in population means?

We are testing

H0 : µ1 = µ2 versus H1 : µ1 6= µ2

The test statistic is

T =
X̄ − Ȳ

S0

√
1/n1 + 1/n2

which has a tn1+n2−2 distribution if H0 is true.

The pooled estimate of variance is given by

s2
0 =

5× 280.3 + 4× 310.3

6 + 5− 2
= 293.63

so s0 = 17.14. The observed value of T is therefore

t =
49.5− 64.4

17.14
√

1
6

+ 1
5

= −1.40.

We can compare this value to a t9 distribution. The P value will be given by

2× P (T < −1.40) = 2× P (T > 1.40). From Table 9, P (T < 1.4) = 0.9025.

Thus P (T > 1.4) = .0975 and the P value is 0.195. So there is no evidence

against H0.
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Example 8.2 The reaction times, in hundredths of a second, of two groups

of subjects taking a flashing-light stimulus are given below. The first group

consisted of subjects who were new to the project while the subjects in the

second group had taken part in previous experiments. Test if experience has

had an effect on the mean response at the 5% significance level.

New 2.7 3.0 3.3 2.9 3.5 2.7 3.0 3.1 2.8 3.0

Experienced 2.7 2.5 3.0 2.7 2.6 2.5 2.9 2.7

Assumptions: The response time, X, of the new subjects is N(µ1, σ
2) and

the response time, Y , of the experienced subjects is N(µ2, σ
2).

H0 : µ1 = µ2 H1 : µ1 6= µ2

The test statistic is

T =
X̄ − Ȳ

S0

√
1/n1 + 1/n2

which has a tn1+n2−2 distribution if H0 is true.

n1 = 10, x̄ = 3.0, (n1 − 1)s2
1 = 0.58, s2

1 = 0.064

n2 = 8, ȳ = 2.7, (n2 − 1)s2
2 = 0.22, s2

2 = 0.031

The pooled estimate of variance is given by

s2
0 =

0.58 + 0.22

10 + 8− 2
= 0.05

The observed value of T is therefore

t =
3.0− 2.7

√
0.05

√
1
10

+ 1
8

= 2.828.

We can compare this value to a t16 distribution. The rejection region for a

5% significance test is |t| > 2.120 so we reject the null hypothesis at the 5%

level and conclude that experience does have an effect on the mean response.

If we are asked to estimate the difference in means between two inde-

pendent normal samples with the same variance we would also want the

corresponding confidence interval. This is given by

x̄− ȳ ± tn1+n2−2(α/2)s0

√(
1

n1

+
1

n2

)
.
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Example 8.3 For the data in Example 8.1 above a 95% confidence interval

for the difference in means for the two samples would be

49.9− 64.4± 2.262× 17.14

(
1

6
+

1

5

)1/2

= −14.5± 23.48

= (−37.98, 8.98)

Example 8.4 For the data in Example 8.2 a 95% confidence interval for the

difference in population means for the two samples would be

3.0− 2.7± 2.120×
√

0.05

(
1

10
+

1

8

)1/2

= 0.3± 0.225

= (0.075, 0.525)

Note that 0 does not belong to the 95% confidence interval agreeing with our

finding that we could reject H0 at the 5% significance level.

For the two sample t-test we have to make the assumption that the pop-

ulation variances are the same. Is this reasonable? In the next section we

test this assumption.

8.2 F test for comparing two variances

We suppose now that the population variances may be different. We want

to test a null hypothesis H0 : σ2
1 = σ2

2 versus H1 : σ2
1 6= σ2

2. We need a bit of

theory. We know that

(n1 − 1)S2
1

σ2
1

∼ χ2
n1−1

(n2 − 1)S2
2

σ2
2

∼ χ2
n2−1

and they are independent. We use the following theorem.

Theorem 8.1 If the random variables C1 and C2 are independent and C1 ∼
χ2

ν1
and C2 ∼ χ2

ν2
then

C1/ν1

C2/ν2

∼ F ν1
ν2

.
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It follows that
S2

1/σ
2
1

S2
2/σ

2
2

=
S2

1/S
2
2

σ2
1/σ

2
2

∼ F n1−1
n2−1

. If we can accept H0 we can go ahead and use our two sample t-test. If we

reject it we will have to think again. We will use a 5% significance test to

make this decision. A suitable test statistic is

F =
S2

1

S2
2

and it can be shown that F ∼ F n1−1
n2−1 if H0 is true where F n1−1

n2−1 is an F

distribution with ν1 = n1− 1 and ν2 = n2− 1 degrees of freedom. The upper

percentage points for an F distribution are given in Table 12. To construct

a rejection region for our test we will also need the lower percentage points

but these can be found using the result that

F−1 =
S2

2

S2
1

∼ F n2−1
n1−1

if H0 is true. Clearly values of F much greater or smaller than 1 will tend to

give evidence against H0.

A word of warning is necessary. The validity of the F test relies heavily

on the underlying populations of our samples being normally distributed. If

they are not the results can be misleading. If possible we should check the

normality assumption using the normal probability plots and tests found in

MINITAB.

Example 8.5 Find the rejection region in terms of F if n1 = 6 and n2 = 11.

We want F 5
10(.025) and F 10

5 (.025). From Table 12(c) these are

F 5
10(.025) = 4.236 F 10

5 (.025) = 6.619.

Thus our rejection region would be F > 4.236 and F−1 > 6.619 or F < 0.151.

We would accept H0 if 0.151 < F < 4.236.

Example 8.6 For the data in example 8.1 the observed value of F is 280.3/310.3 =

0.9033. To carry out a test of H0 : σ2
1 = σ2

2 versus a two-sided alternative

the rejection region is found as follows.

F 5
4 (.025) = 9.364 F 4

5 (.025) = 7.388.

5



Thus our rejection region would be F > 9.364 and F−1 > 7.388 or F < 0.135.

Thus we can certainly accept the null hypothesis.

Example 8.7 Random samples were independently drawn from two normal

populations. The first sample of size 13 had mean 9.5 and variance 93.3 and

the second of size 11 had mean 14.0 and variance 25.2. Test the hypothesis

that the populations have the same variance at the 5% significance level.

The observed value of F is 93.3/25.2 = 3.70. To carry out a test of

H0 : σ2
1 = σ2

2 versus a two-sided alternative the rejection region is found as

follows.

F 12
10 (.025) = 3.621 F 10

12 (.025) = 3.374.

Thus our rejection region would be F > 3.621 and F−1 > 3.374 or F < 0.296.

Thus we reject the null hypothesis at the 5% significance level.

We can find a confidence interval for the ratio σ2
1/σ

2
2.

P

[
F n1−1

n2−1 (.975) <
S2

1/S
2
2

σ2
1/σ

2
2

< F n1−1
n2−1 (.025)

]
= 0.95

Using the result about lower percentage points we have

P

[
1

F n2−1
n1−1 (.025)

<
S2

1/S
2
2

σ2
1/σ

2
2

< F n1−1
n2−1 (.025)

]
= 0.95

Rearranging so that σ2
1/σ

2
2 is the subject, we have the 95% random interval

P

[
S2

1/S
2
2

F n1−1
n2−1 (.025)

<
σ2

1

σ2
2

< (S2
1/S

2
2)F

n2−1
n1−1 (.025)

]
= 0.95

Thus the 95% confidence interval for σ2
1/σ

2
2 is(

s2
1/s

2
2

F n1−1
n2−1 (.025)

, (s2
1/s

2
2)F

n2−1
n1−1 (.025)

)

Example 8.8 For the data in Example 8.7 the 95% confidence interval for

σ2
1/σ

2
2 is (

3.70

3.621
, 3.70× 3.374

)
= (1.02, 12.48)

If we are interested in Example 8.7 in going on to test the hypothesis

that the population means are equal how should we proceed? Since we can’t

assume the population variances are equal we cannot use the two sample

t-test. We discuss this in the next section.
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8.3 An approximate test when variances are unequal

If we wanted to test equality of two means when we knew the (different)

population variances we would use the test statistic

Z =
X̄ − Ȳ√

σ2
1/n1 + σ2

2/n2

which would have a standard normal distribution if the null hypothesis was

true. If the variances were unknown it would seem natural to use the test

statistic

T ∗ =
X̄ − Ȳ√

S2
1/n1 + S2

2/n2

.

Unfortunately the distribution of T ∗ is not known exactly. We can, however,

approximate it by a t distribution with ν∗ degrees of freedom where

ν∗ =
(s2

1/n1 + s2
2/n2)

2

(
s4
1/n2

1

n1−1
+

s4
2/n2

2

n2−1

) .

(I won’t expect you to remember this formula!)

Note that in general ν∗ is not an integer but we could interpolate in the t

distribution tables. MINITAB takes the integer below ν∗ and this is perhaps

preferable.

Example 8.9 We saw in Example 8.7 that we could not assume that the

population variances were equal. We can test the equality of the population

means using T ∗.

H0 : µ1 = µ2 versus H1 : µ1 6= µ2

The test statistic is

T ∗ =
X̄ − Ȳ√

S2
1/n1 + S2

2/n2

.

which has an approximate tν∗ distribution if H0 is true where

ν∗ =
(93.3/13 + 25.2/11)2

(
93.32/132

12
+ 25.22/112

10

) = 18.6.
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The observed value of the test statistic is t∗ = −5.5/3.077 = −1.787. If

we use a two sided test with α = 0.05 the rejection region is approximately

{t∗ : |t∗| > 2.096} so we don’t reject H0 at the 5% significance level.

There is some dispute about the use of this approximate t-test. Some

books recommend that it is always used, however close the sample variances,

because the F test relies heavily on normality. Others argue that the ap-

proximate test has lower power than the two sample t-test and if the sample

variances are close together it is better to use the two sample t-test. In this

course we will adopt the latter position, checking the equality of variances

by the F test and only using the approximate procedure if there is evidence

against the variances being equal.

In practice unless the two sample variances are very different, in which

case we will probably use the approximate test, the difference in answers

between the two methods is minimal.

We can find the approximate confidence interval for the difference in

means as

x̄− ȳ ± tν∗(α/2)

√(
s2
1

n1

+
s2
2

n2

)
.

Example 8.10 For the data in Example 8.7 the approximate 95% confidence

interval for µ1 − µ2 is

−5.5± 2.096× 3.077 = −5.5± 6.450 = (−11.95, 0.95).

8.4 Matched pairs t-test

One of the assumptions we make in the two sample t-test is that the two

samples are independent. If they are not we can use another test called

the matched pairs t-test. This test is appropriate if the measurements are

taken of pairs of similar subjects. For example, we might have pairs of twins,

pigs from the same litter, a pair of measurements on the same individual

or pairs of patients who have been matched to be similar. We would expect

the measurements on such similar individuals to be similar. This violates the

independence assumption needed for a two sample t-test. How do we analyse

8



such data? We find the differences for each pair and then do a 1 sample t-

test on the differences. We are assuming that the differences are normally

distributed, which we should check using a normal plot in MINITAB, with

an unknown mean and variance. We test the null hypothesis that this mean

is zero.

Example 8.11 Sixteen patients sampled at random were matched by age and

weight. One of each pair were assigned at random to treatment A and the

other to treatment B. A blood test of a certain chemical produced the following

results

A 14.0 5.0 8.6 11.6 12.1 5.3 8.9 10.3

B 13.2 4.7 9.0 11.1 12.2 4.7 8.7 9.6

Test whether there is a difference in the two treatments. Find a 90% confi-

dence interval for the mean difference in the treatments.

The differences are +0.8, +0.3,−0.4, +0.5,−0.1, +0.6, +0.2, +0.7. The

mean difference is d̄ = 0.325, the variance of the differences is s2
d = 0.1707

so the standard deviation is sd = 0.413. The null hypothesis is µd = 0 versus

an alternative that µd 6= 0. The test statistic is

T =
d̄
√

n

sd

which has a t distribution with 7 degrees of freedom if H0 is true. The observed

value of t=2.226. Comparing this with a t7 distribution P (t7 < 2.226) =

.9692 so the P value is 2(1 − 0.9692) = 0.0616 so there is weak evidence

against the null hypothesis.

A 90% confidence interval is of the form

d̄± t7(.05)
sd√
n

= 0.325± 1.895× 0.413√
8

= 0.325± 0.277

= (0.048, 0.602)

Such matching is a simple example of a designed experiment with blocking.

Here we have blocks of size 2 but in more complicated examples we might

want, for example, to compare 5 animal feeds. We could do this using 5

9



animals from the same litter. It is important that biases are not introduced

into the experiment so we allocate diets to animals at random within each

litter. If we are using the same person twice in a study, once with each

treatment, it is important to choose the order in which they receive the

treatments randomly. With a drug treatment it may be necessary to allow

time between the two treatments so that the first drug is not still affecting

the subject when the second drug is taken. If the subject is a patient with

a long term illness requiring continuous treatment this could be a problem.

In such a clinical trial it is also important, if practically possible, that the

patient receiving the treatment does not know which treatment he is receiving

and the doctor assessing their improvement also does not know as again this

might introduce biases. The whole subject of design of experiments is a huge

one in its own right.

8.5 Test of two proportions

Suppose we have collected data in an opinion poll on whether the budget

was good for the country from men and women and we want to test the

hypothesis that the proportions thinking it was good are equal. Suppose we

question n1 men and n2 women and x1 men and x2 women say it was good.

The estimate of the proportions thinking it was good will be p̂1 = x1/n1 and

p̂2 = x2/n2. We can estimate the difference in proportions by p̂1− p̂2. To test

the hypothesis that the population proportions are equal H0 : p1 = p2 we

need a test statistic with known distribution if H0 is true. If n1 and n2 are

large then by the central limit theorem the distribution of p̂1− p̂2 is normal.

The variance of p̂1 − p̂2 is

p1(1− p1)

n1

+
p2(1− p2)

n2

.

To estimate this quantity note that if H0 is true then p1 = p2 = p and the

best estimate of p is p̂ = (x1 + x2)/(n1 + n2). Thus our test statistic is

Z =
p̂1 − p̂2√

p̂(1− p̂)
(

1
n1

+ 1
n2

)

which has a standard normal distribution if H0 is true.
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Example 8.12 Of 1000 men asked 450 thought the budget was good for the

country and of 950 women 390 thought it was good. Test the hypothesis at

the 5% level that the same proportion of men and women thought it was good.

The null hypothesis is H0 : p1 = p2 against H1 : p1 6= p2.

p̂1 = 450/1000 = 0.45, p̂2 = 390/950 = 0.4105, p̂ = 840/1950 = .4308

The test statistic Z given above has a standard normal distribution if H0 is

true. The observed value of Z is

z =
0.45− 0.4105√

0.4308× 0.5692× (
1

1000
+ 1

950

) = 1.759

The rejection region is {z : |z| > 1.96} so we don’t reject H0.

Note that we actually know a different way to do this problem. We could

write our data in the form of a 2× 2 table.

Good Bad Total

Men 450 550 1000

Women 390 560 950

Total 840 1110 1950

Using the formula we had for a 2× 2 table the value of X2 is

(450× 560− 550× 390)21950

1000× 950× 840× 1110
= 3.096

Under the null hypothesis that the distribution of men and women are the

same X2 ∼ χ2
1 and we would fail to reject at the 5% level.

Note that
√

3.096 = 1.759. Is this a coincidence? No. It is a fact that if

X ∼ N(0, 1) then X2 ∼ χ2
1. You can show that the observed value of z does

equal the square root of the formula given before. The two P values for the

test would be identical. Also note that we said for smaller sample sizes you

should use a continuity correction.

The confidence interval for the difference in proportions is not quite what

you would expect from the test. Because we are not assuming that p1 = p2

we estimate the variance differently. The 95% confidence interval is given by

p̂1 − p̂2 ± 1.96×
√

p̂1(1− p̂1)

n1

+
p̂2(1− p̂2)

n2

.
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Example 8.13 For the opinion poll data the 95% confidence interval is given

by

.45− .4105± 1.96

√
(.45)(.55)

1000
+

(.4105)(.5895)

950
= .0395± .0439

= (−0.0044, 0.0834)
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9 Two Dimensional Random Variables

Definition 9.1

Let S be a sample space associated with an experiment E, and X1, X2 be

functions, each assigning a real number X1(e), X2(e) to every outcome e ∈ E.

Then the pair (X1, X2) is called a two-dimensional random variable. The

range space of the two-dimensional random variable is

R(X1,X2) = {(x1, x2) : x1 ∈ RX1 , x2 ∈ RX2} ⊂ R2.

Definition 9.2

The cumulative distribution function of the random variable (X1, X2) is

F(X1,X2)(x1, x2) = P (X1 ≤ x1, X2 ≤ x2) (9.1)

9.1 Discrete Two-Dimensional Random Variables

If possible values of (X1, X2) are countable, then the variable is discrete. The

c.d.f. of a discrete r.v. (X1, X2) can be written as

F (x1, x2) =
∑

x2j≤x2

∑
x1i≤x1

p(x1i, x2j) (9.2)

where p(x1i, x2j) denotes the joint probability function

p(x1i, x2j) = P (X1 = x1i, X2 = x2j).

That is:

1. p(x1i, x2j) ≥ 0 , for all i, j

2.
∑

all j

∑
all i p(x1i, x2j) = 1

9.2 Continuous Two-Dimensional Random Variables

If the possible values are some uncountable set in the Euclidean plane, then

the variable (X1, X2) is continuous, for example values might be in the range

R(X1,X2) = {(x1, x2) : a ≤ x1 ≤ b, c ≤ x2 ≤ d}

1



for some real a, b, c, d.

The c.d.f. of a continuous r.v. (X1, X2) can be written as

F (x1, x2) =

∫ x2

−∞

∫ x1

−∞
f(x, y)dxdy, (9.3)

where f(x1, x2) is the probability density function such that

1. f(x1, x2) ≥ 0 for all (x1, x2) ∈ R2

2.
∫∞
−∞

∫∞
−∞ f(x1, x2)dx1dx2 = 1.

Also

P (a ≤ X1 ≤ b, c ≤ X2 ≤ d) =

∫ d

c

∫ b

a

f(x1, x2)dx1dx2 (9.4)
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