SUBROUTINE gaussj(a,b) USE nrtype; USE nrutil, ONLY : assert_eq,nrerror,outerand,outerprod,swap IMPLICIT NONE REAL(SP), DIMENSION(:,:), INTENT(INOUT) :: a,b INTEGER(I4B), DIMENSION(size(a,1)) :: ipiv,indxr,indxc LOGICAL(LGT), DIMENSION(size(a,1)) :: lpiv REAL(SP) :: pivinv REAL(SP), DIMENSION(size(a,1)) :: dumc INTEGER(I4B), TARGET :: irc(2) INTEGER(I4B) :: i,l,n INTEGER(I4B), POINTER :: irow,icol n=assert_eq(size(a,1),size(a,2),size(b,1),'gaussj') irow => irc(1) icol => irc(2) ipiv=0 do i=1,n lpiv = (ipiv == 0) irc=maxloc(abs(a),outerand(lpiv,lpiv)) ipiv(icol)=ipiv(icol)+1 if (ipiv(icol) > 1) call nrerror('gaussj: singular matrix (1)') if (irow /= icol) then call swap(a(irow,:),a(icol,:)) call swap(b(irow,:),b(icol,:)) end if indxr(i)=irow indxc(i)=icol if (a(icol,icol) == 0.0) & call nrerror('gaussj: singular matrix (2)') pivinv=1.0_sp/a(icol,icol) a(icol,icol)=1.0 a(icol,:)=a(icol,:)*pivinv b(icol,:)=b(icol,:)*pivinv dumc=a(:,icol) a(:,icol)=0.0 a(icol,icol)=pivinv a(1:icol-1,:)=a(1:icol-1,:)-outerprod(dumc(1:icol-1),a(icol,:)) b(1:icol-1,:)=b(1:icol-1,:)-outerprod(dumc(1:icol-1),b(icol,:)) a(icol+1:,:)=a(icol+1:,:)-outerprod(dumc(icol+1:),a(icol,:)) b(icol+1:,:)=b(icol+1:,:)-outerprod(dumc(icol+1:),b(icol,:)) end do do l=n,1,-1 call swap(a(:,indxr(l)),a(:,indxc(l))) end do END SUBROUTINE gaussj