Aspects of Climate Change

1. Forcing of the atmosphere and ocean circulation
2. Dynamics of the atmosphere
3. Dynamics of the ocean
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1. Forcing of the atmosphere and ocean circulation

The Earth

The Earth 1s almost perfect sphere.

Mean radius a = 6370 km
gravity field g = 9.81 m/s’

rotation period t = 24 h (this

corresponds to an angular velocity of Q =27/7=7.27x10 s ).
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The Atmosphere and Ocean

The atmosphere and ocean are thin films of fluid on the spherical

Earth under the influence of:

(1) gravity
(1) Earth’s rotation

(111) heating by solar radiation
Atmospheric constituents

Atmosphere 1s mixture of 1deal gases: N, and O, largest by volume,
also CO,, H,O & O;.

Ideal gas: p/ p=RT (Rgas constant, T temperature).
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Atmospheric forcing

Forcing of atmosphere from Sun; interactions with land and ocean

also important.

Incident solar flux, or power / unit area, of solar energy (the so-
called solar constant) is F =1370 W m™.

Morth

Solar energy ,’\ Power intercepted in tube of cross-

. 9 .
sectional area 7a“~, where a 1s

Earth’s radius.

s Solar energy

\ Hence total solar energy received /

unit time is Fza?.
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Albedo
Assume albedo of Earth is o = 0.3

1.e., 30% of the incoming solar radiation 1s reflected back to space

without being absorbed.

Final Incoming power is

(1-a)Fra’ (1.1)
Black body

Assume Earth emits as black body at uniform absolute temperature
T.
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Stefan-Boltzmann law: power emitted / unit area = oT*

(where o 1s Stefan-Boltzmann constant)

Power emitted in all directions from a total surface area of 47a”.

Final outgoing power is

4ra’oT? (1.2)
Power budget

By equating (1.1) and (1.2) and using standard values find that:

T =255K, but observed value 1s ~288K.
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Greenhouse effect

| ‘| Atmosphere temperature T,, transmits
F
g F, A ke fraction 7, shortwave andz,, longwave
A
C " radiation, absorbs remainder.
A From (1.1) mean incoming flux (power /
Cf; Q (J 1
G wfF 'ro DJr lunitarea) K = A (1-a)F.
- Growmd(T,)
Ground emits as black body, F; = aTg4

Atmosphere (not black body) emits' F,=(- r,W)aTa4.

'Kirchhoff’s Law
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Top of atmosphere F; = F, +17,,F, and ground F; = F, + 7, F.

If 7,=0.9 and 7,=0.2, find T,=286K.

Greenhouse effect: greater temperature from greater transmission

for shortwave vs longwave radiation.
Radiative transfer
Black-body emission

6000K (solar) UV, visible & IR wavelengths 0.1 to 4um

(shortwave);

288K (Earth) IR wavelengths 4 to 100 um (longwave).
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Global heat balance

Absorbing gases: ozone (O3) in UV & visible; carbon dioxide (CO,)

& water vapour (HzO) in IR
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Radiative forcing

Greenhouse effect: difference between surface & top-of-atmosphere

emission of longwave radiation. [8-12um atmospheric window
(absorption weak); 9.6um Oj3; 6.3um & >16mm H,0O; CO, 15um.]
Radiative forcing (IPCC): change in net irradiance at tropopause

(~10-15km). Radiative forcing due to doubling CO, estimated ~4

Wm™. Without feedbacks gives surface temperature rise of ~1.2°C.

Climate sensitivity (IPCC): equilibrium change in global mean
surface temperature due to doubling CO, (takes into account

feedbacks). Likely in range 2-4.5°C; best guess 3°C.
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Aerosols

Aerosol: particles (0.1-10um diameter). Sulphate, fossil fuel organic

& black carbon, biomass burning, mineral dust, sea salt.

Direct effect: scatter (negative RF) and absorb short(long)wave

radiation (positive or negative RF)

Indirect effect: alter cloud microphysics (hence radiative properties),
amount (cloud condensation nuclei) & lifetime. Potential for large

impact from small change (negative RF).
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Volcanoes and solar variability

Solar output increased gradually over industrial era (in addition to

11-year cycle) causing small +RF.

Explosive volcanic eruptions can lead
to short-lived (few yrs) —RF from

sulphate aerosol in stratosphere”.

? Last major eruption Mt Pinatubo (1991)
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Estimate of radiative forcing (IPCC)

Radiative forcing of climate between 1750 and 2005
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Climate change over the past century

Global Mean Temperature

Difference (°C) from 1961 - 1990
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Earth’s surface has
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[TPCC fig 3.3].

Tropospheric

humidity increasing

by 1.2%/decade [fig

3.20]
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Physics of atmosphere

Each portion of atmosphere approx in hydrostatic balance (usually

valid on scales > few km)
1.e., weight supported by pressure difference pressure between lower
& upper surfaces.

_op
oz’

gpo = 0 1s density, p 1s pressure.

Result of hydrostatic balance & 1deal gas law: typically pressure and
density fall exponentially with height.

EFS 1/17



For atmosphere with temperature T,

gp __op _ n. e 92RTy 1.3
RT, g P=Pg¢ (1.3)
RT,

—— 1s ‘scale height’ (~7 km if T, =240K); p decreases upwards.
g

Density stratification

Gravity produces density stratification. An air parcel displaced
upwards (downwards) from its equilibrium position is negatively
(positively) buoyant & will fall (rise) back under gravity. Buoyancy

acts as restoring force; atmosphere is stably stratified.
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Thermodynamics

First law of thermodynamics: the increase in internal energy of a
system oU equals heat supplied plus work done on the system, i.e.

oU =ToS — poV, where S 1s the entropy and V .1s the volume.
For a unit mass of 1deal gas withV =1/ p, then have U =¢, T,
where G 1s specific heat at constant volume (C,, =G, + R 1s specific

heat at constant pressure). Hence,

Ol op
oS=c.——R— 1.4
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Potential temperature
Adiabatic process: no gain/loss heat, 6S =0.

Cylinder of air, temperature T & pressure p, compressed

adiabatically until temperature ¢ & pressure pj.
Integrating (1.4) gives & =T (p,/ p)* where x =R/c,.

@ is potential temperature

@ 1s conserved (as 1s entropy) 1n adiabatic motion. For stable

atmosphere, ¢ increases upwards, (‘isentropic co-ordinate’).
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Lapse rate

For adiabatically rising parcel, entropy (and &) constant as height

changes. Hence from (1.3) and (1.4),

(de RT (dpj g
—| = — =2 =T,.
dz parcel  CpP dz parcel  Cp

[',, adiabatic lapse rate, is rate of decrease of temperature with

height following the adiabatic parcel as it rises.

Dry adiabatic lapse rate ~10 K km™.
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Z
Convection
=l
Convection occurs only if Lapseate [ =-dTidz
_ I, ~ 10 K/km
atmospheric lapse rate stable
exceeds certaln Value (e.g. 1—‘}]__“1 ..............................................................
dry adiabatic lapse rate). unstable
If background temperature Tj T

falls more quickly with height, a rising parcel 1s warmer than

surroundings & continues to rise under own buoyancy: instability.

Convection carries heat up & thus reduces lapse rate until

equilibrium value.
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Latent heat

[atent heating/cooling can transfer heat (e.g., evaporation of droplet
of sea-water & condensation into droplet at another location in

atmosphere transfers heat from ocean to atmosphere).

Moist convection

As a parcel rises adiabatically, p falls, so T falls, water vapour

condenses, latent heat released.

Moist adiabatic lapse rate less than for dry air (more easily

exceeded).

(For descending air, dry adiabatic lapse rate 1s relevant.)
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Radiative-convective model

1-D radiative equilibrium calculation predicts temperature sharply
decreasing with height at lower boundary, implying convectively

unstable.

Radiative-convective calculation adjusts temperature gradient to

neutral stability where necessary (takes account of moisture).

Manabe & Wetherald (1967): radiative-convective calculation with
fixed relative humidity. Simplest possible model including

combined effect of fluid dynamics and other physical processes.
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Radiative-convective
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Oceans

71% of Earth’s surface covered by water.

Average depth of 3.7 km, but sometimes exceeds 6km.
Heat capacity of upper 3m ocean = entire atmosphere.

Ocean stores 50 times more carbon than atmosphere and takes up

roughly 1/3 of carbon released into atmosphere by human activities.

Changes 1n sea surface temperature (SST) can affect atmosphere

(e.g. hurricanes, El Nifio).
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Forcing of ocean

Forcing of the ocean from:

(1)  wind stress

(11) heat flux

(111) freshwater flux
(1iv) tides

Wind stress: winds exert stress on surface®: drives ocean currents.

Highly variable; much uncertainty.
=pU’Cp  pa is density of air; U*= wind speed at 10m,
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Cp = drag coefficient (function of wind speed, atmospheric stability

& sea state).

Cp= 0.00115 when |U| < 1 1m/s and (4.9+0.065|U[)x10™ otherwise.

a.) SOC Wind Stress: Annual mean {Nm‘E]
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Heat flux has 4 components: (1) sensible heat flux (air/sea
temperature difference); (11) latent heat flux (evapouration); (i11)
incoming shortwave radiation from sun; (1v) longwave radiation

from atmosphere & ocean
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Freshwater flux from evaporation and precipitation
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Tides are also an important force on the ocean.
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