Aspects of Climate Change

- 1. Forcing of the atmosphere and ocean circulation
- 2. Dynamics of the atmosphere
- 3. Dynamics of the ocean

1. Forcing of the atmosphere and ocean circulation

The Earth

The Earth is almost perfect sphere.

Mean **radius** a = 6370 km

gravity field $g = 9.81 \text{ m/s}^2$

rotation period $\tau = 24$ h (this

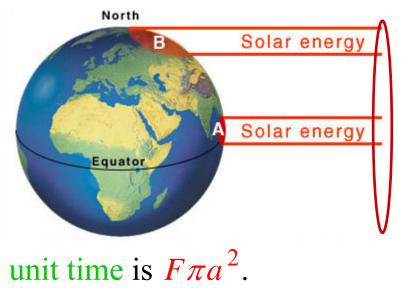
corresponds to an **angular velocity** of $\Omega = 2\pi / \tau = 7.27 \times 10^5 \text{ s}^{-1}$).

The Atmosphere and Ocean

The atmosphere and ocean are thin films of fluid on the spherical Earth under the influence of:

- (i) gravity
- (ii) Earth's rotation
- (iii) heating by solar radiation

Atmospheric constituents


Atmosphere is mixture of ideal gases: N_2 and O_2 largest by volume, also CO_2 , $H_2O \& O_3$.

Ideal gas: $p / \rho = RT$ (*R* gas constant, *T* temperature).

Atmospheric forcing

Forcing of atmosphere from Sun; interactions with land and ocean also important.

Incident solar flux, or power / unit area, of solar energy (the socalled solar constant) is $F = 1370 \text{ W m}^{-2}$.

Power intercepted in tube of crosssectional area πa^2 , where *a* is Earth's radius.

Hence total solar energy received /

Albedo

Assume **albedo** of Earth is $\alpha = 0.3$

i.e., 30% of the incoming solar radiation is reflected back to space without being absorbed.

Final *incoming* power is

$$(1-\alpha)F\pi a^2 \tag{1.1}$$

Black body

Assume Earth emits as **black body** at uniform absolute temperature T.

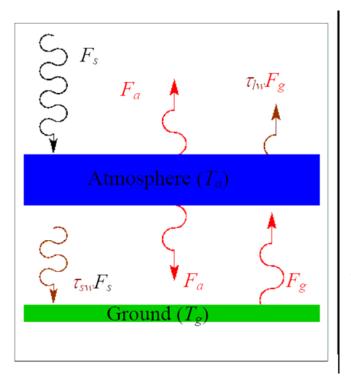
Stefan-Boltzmann law: power emitted / unit area = σT^4

(where σ is Stefan-Boltzmann constant)

Power emitted in all directions from a total surface area of $4\pi a^2$.

Final *outgoing* power is

 $4\pi a^2 \sigma T^4$


(1.2)

Power budget

By equating (1.1) and (1.2) and using standard values find that:

T = 255K, but observed value is ~288K.

Greenhouse effect

Atmosphere temperature T_a , transmits fraction τ_{sw} shortwave and τ_{lw} longwave radiation, absorbs remainder.

From (1.1) mean incoming flux (power /

unit area)
$$F_s = \frac{1}{4}(1-\alpha)F$$
.

Ground emits as black body, $F_g = \sigma T_g^4$

Atmosphere (not black body) emits¹ $F_a = (1 - \tau_{lw})\sigma T_a^4$.

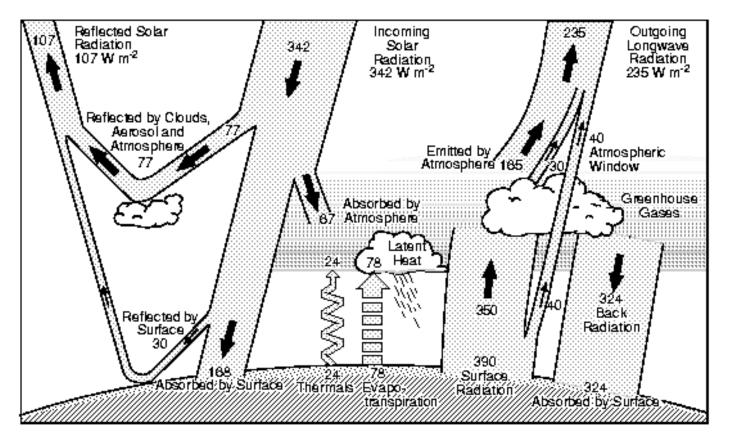
¹Kirchhoff's Law

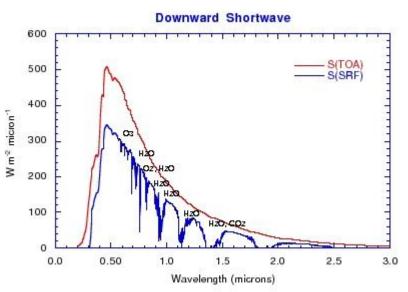
Top of atmosphere $F_s = F_a + \tau_{lw}F_g$ and ground $F_g = F_a + \tau_{sw}F_s$.

If $\tau_{sw}=0.9$ and $\tau_{lw}=0.2$, find $T_g=286$ K.

Greenhouse effect: greater temperature from greater transmission for shortwave vs longwave radiation.

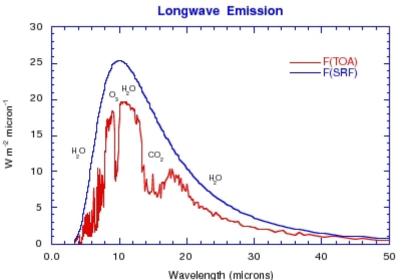
Radiative transfer


Black-body emission


6000K (solar) UV, visible & IR wavelengths 0.1 to $4\mu m$ (shortwave);

288K (Earth) IR wavelengths 4 to 100 μ m (longwave).

Global heat balance


Absorbing gases: ozone (O_3) in UV & visible; carbon dioxide (CO_2) & water vapour (H_2O) in IR

Shortwave radiation - scattered by

atmospheric gases, or reflected clouds/ground back to space; absorbed by (& heats) atmospheric gases (H₂O, O₃)/clouds/ground

Longwave radiation - emitted & absorbed by atmospheric gases (CO₂, H₂O, O₃), clouds/ground: heat transfer, or heat lost to space.

Radiative forcing

Greenhouse effect: difference between surface & top-of-atmosphere emission of longwave radiation. [8-12µm atmospheric window (absorption weak); 9.6 μ m O₃; 6.3 μ m & >16mm H₂O; CO₂ 15 μ m.] **Radiative forcing (IPCC):** change in net irradiance at tropopause (~10-15km). Radiative forcing due to doubling CO_2 estimated ~4 Wm^{-2} . Without feedbacks gives surface temperature rise of $\sim 1.2^{\circ}C$. **Climate sensitivity (IPCC)**: equilibrium change in global mean surface temperature due to doubling CO_2 (takes into account feedbacks). Likely in range 2-4.5°C; best guess 3°C.

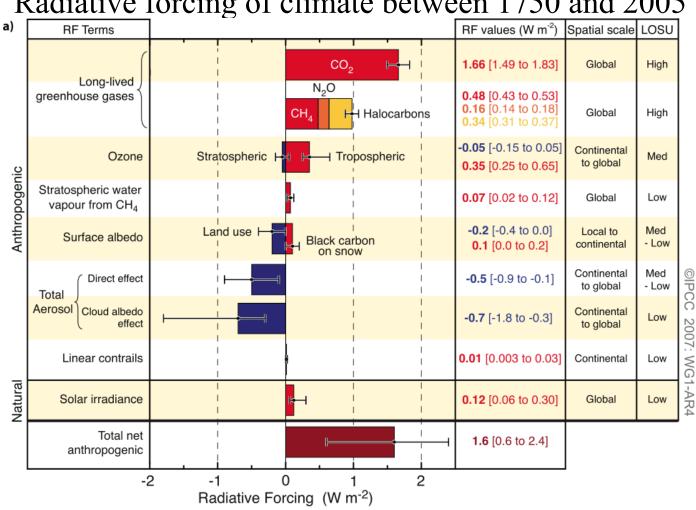
Aerosols

Aerosol: particles (0.1-10 μ m diameter). Sulphate, fossil fuel organic & black carbon, biomass burning, mineral dust, sea salt.

Direct effect: scatter (negative RF) and absorb short(long)wave radiation (positive or negative RF)

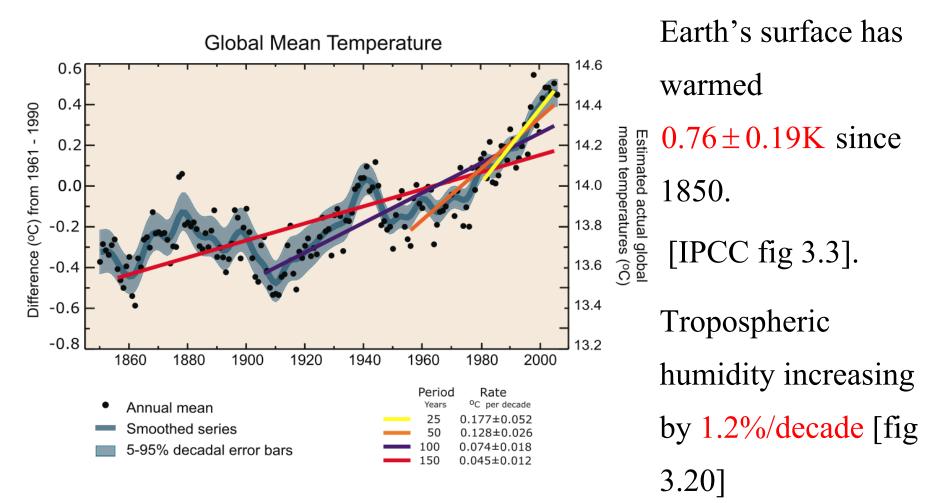
Indirect effect: alter cloud microphysics (hence radiative properties), amount (cloud condensation nuclei) & lifetime. Potential for large impact from small change (negative RF).

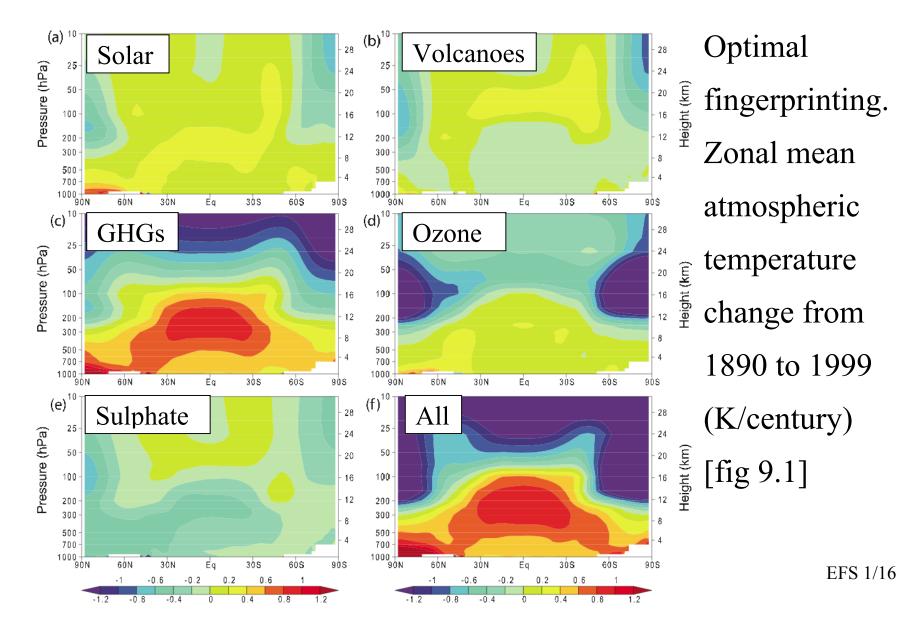
Volcanoes and solar variability


Solar output increased gradually over industrial era (in addition to 11-year cycle) causing small +RF.

Explosive volcanic eruptions can lead to short-lived (few yrs) –RF from sulphate aerosol in stratosphere².

² Last major eruption Mt Pinatubo (1991)


Estimate of radiative forcing (IPCC)


Radiative forcing of climate between 1750 and 2005

EFS 1/14

Climate change over the past century

Attribution

Physics of atmosphere

Each portion of atmosphere approx in **hydrostatic balance** (usually valid on scales > few km)

i.e., weight supported by pressure difference pressure between lower& upper surfaces.

 $g\rho = -\frac{\partial p}{\partial z}$, ρ is density, p is pressure.

Result of hydrostatic balance & ideal gas law: typically pressure and density fall exponentially with height.

For atmosphere with temperature T_0

$$\frac{gp}{RT_0} = -\frac{\partial p}{\partial z}, \quad p = p_0 \,\mathrm{e}^{-gz/RT_0} \tag{1.3}$$

 $\frac{RT_0}{g}$ is 'scale height' (~7 km if $T_0 = 240K$); *p* decreases upwards.

Density stratification

Gravity produces **density stratification**. An air parcel displaced upwards (*downwards*) from its equilibrium position is negatively (*positively*) buoyant & will fall (*rise*) back under gravity. Buoyancy acts as restoring force; atmosphere is **stably stratified**.

Thermodynamics

First law of thermodynamics: the increase in internal energy of a system δU equals heat supplied plus work done on the system, i.e. $\delta U = T \delta S - p \delta V$, where *S* is the **entropy** and *V* is the volume. For a unit mass of ideal gas with $V = 1/\rho$, then have $U = c_V T$, where c_V is specific heat at constant volume ($c_p = c_V + R$ is specific heat at constant pressure). Hence,

$$\delta S = c_p \frac{\delta T}{T} - R \frac{\delta p}{p} \tag{1.4}$$

Potential temperature

Adiabatic process: no gain/loss heat, $\delta S = 0$.

Cylinder of air, temperature T & pressure p, compressed adiabatically until temperature θ & pressure p_0 .

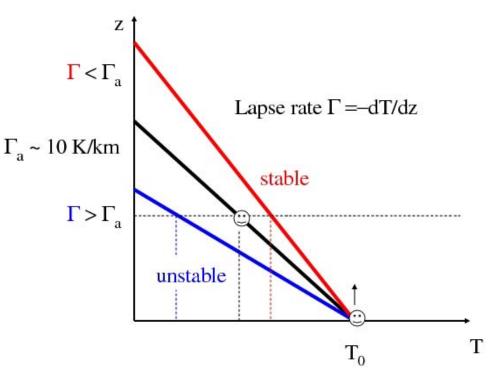
Integrating (1.4) gives $\theta = T(p_0 / p)^{\kappa}$ where $\kappa = R / c_p$.

θ is **potential temperature**

 θ is conserved (as is entropy) in adiabatic motion. For stable atmosphere, θ increases upwards, ('**isentropic co-ordinate**').

Lapse rate

For adiabatically rising parcel, entropy (and θ) constant as height changes. Hence from (1.3) and (1.4),


$$-\left(\frac{dT}{dz}\right)_{parcel} = \frac{RT}{c_p p} \left(\frac{dp}{dz}\right)_{parcel} = \frac{g}{c_p} \equiv \Gamma_a.$$

 Γ_a , adiabatic lapse rate, is rate of decrease of temperature with height following the adiabatic parcel as it rises.

Dry adiabatic lapse rate ~10 K km⁻¹.

Convection

- Convection occurs only if atmospheric lapse rate exceeds certain value (e.g. dry adiabatic lapse rate).
- If background temperature

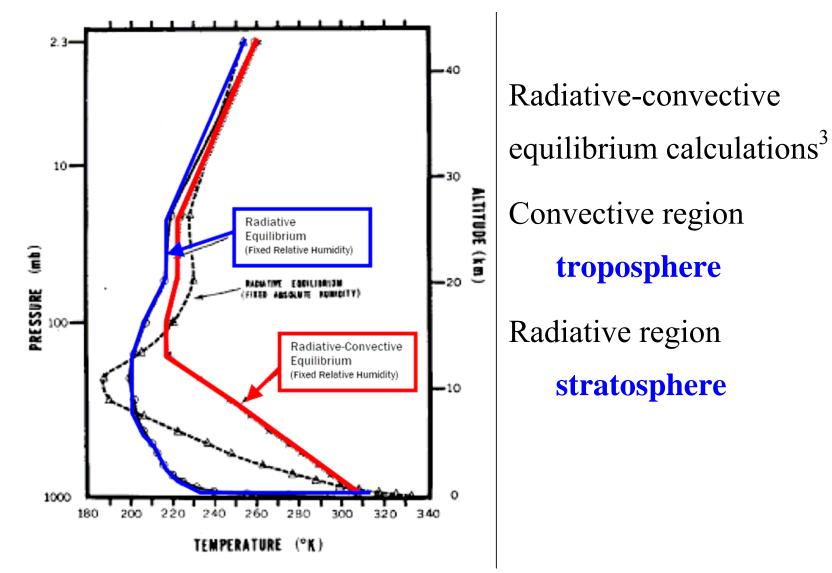
falls more quickly with height, a rising parcel is warmer than surroundings & continues to rise under own buoyancy: instability. Convection carries heat up & thus reduces lapse rate until equilibrium value.

Latent heat

Latent heating/cooling can transfer heat (e.g., evaporation of droplet of sea-water & condensation into droplet at another location in atmosphere transfers heat from ocean to atmosphere).

Moist convection

As a parcel rises adiabatically, p falls, so T falls, water vapour condenses, latent heat released.


Moist adiabatic lapse rate less than for dry air (more easily exceeded).

(For descending air, dry adiabatic lapse rate is relevant.)

Radiative-convective model

1-D radiative equilibrium calculation predicts temperature sharply decreasing with height at lower boundary, implying convectively unstable.

Radiative-convective calculation adjusts temperature gradient to neutral stability where necessary (takes account of moisture). Manabe & Wetherald (1967): radiative-convective calculation with fixed relative humidity. Simplest possible model including combined effect of fluid dynamics and other physical processes.

³S. Munabe and R.T. Wetherald, Journal of the Atmospheric Science, 24, 241–259

Oceans

71% of Earth's surface covered by water.

Average depth of 3.7 km, but sometimes exceeds 6km.

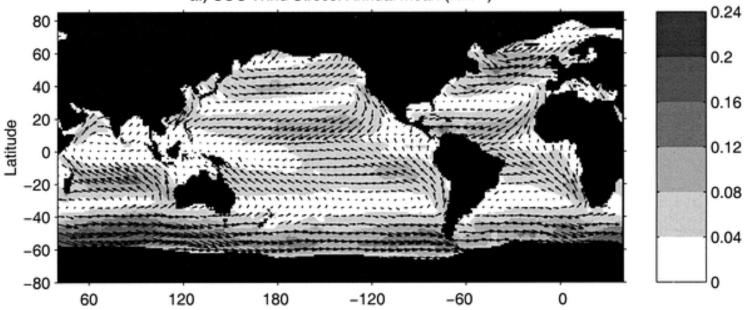
Heat capacity of upper 3m ocean \approx entire atmosphere.

Ocean stores 50 times more carbon than atmosphere and takes up roughly 1/3 of carbon released into atmosphere by human activities. Changes in sea surface temperature (SST) can affect atmosphere

(e.g. hurricanes, El Niño).

Forcing of ocean

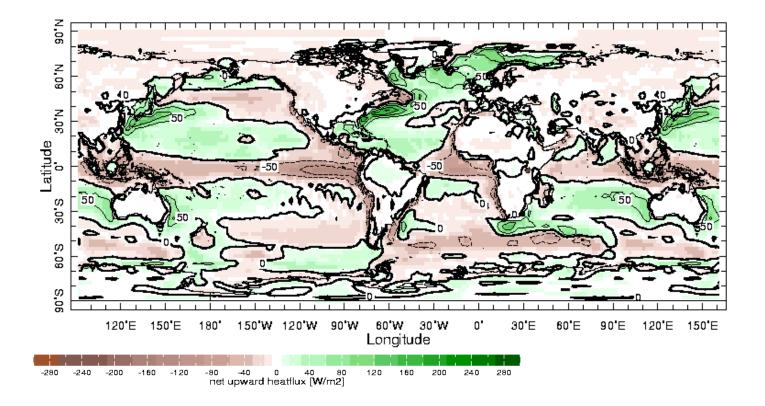
Forcing of the ocean from:

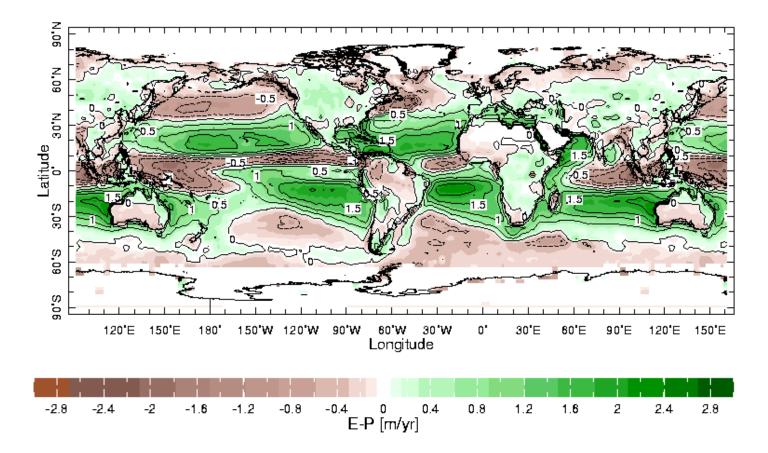

- (i) wind stress
- (ii) heat flux
- (iii) freshwater flux
- (iv) tides

Wind stress: winds exert stress on surface⁴: drives ocean currents. Highly variable; much uncertainty.

 $\tau_s = \rho_a U^2 C_D$ ρ_a is density of air; $U^2 =$ wind speed at 10m,

 C_D = drag coefficient (function of wind speed, atmospheric stability & sea state).


 $C_D = 0.00115$ when |U| < 11m/s and $(4.9+0.065|U|) \times 10^{-4}$ otherwise.


a.) SOC Wind Stress: Annual mean (Nm⁻²)

⁴ through turbulent transfer of momentum across atmospheric boundary layer

Heat flux has 4 components: (i) sensible heat flux (air/sea temperature difference); (ii) latent heat flux (evapouration); (iii) incoming shortwave radiation from sun; (iv) longwave radiation from atmosphere & ocean

Freshwater flux from evaporation and precipitation

Tides are also an important force on the ocean.