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Abstract 

One of the commonly used tools for detecting changes in climatic and hydrologic time series is trend analysis. A number of 
statistical tests exist to assess the significance of trends in time series. One of the commonly used non-parametric trend tests is 
the Mann-Kendall trend test. The null hypothesis in the Mann-Kendall test is that the data are independent and randomly 
ordered. However, the existence of positive autocorrelation in the data increases the probability of detecting trends when 
actually none exist, and vice versa. Although this is a well-known fact, few studies have addressed this issue, and auto- 
correlation in the data is often ignored. In this study, the effect of autocorrelation on the variance of the Mann-Kendall trend 
test statistic is discussed. A theoretical relationship is derived to calculate the variance of the Mann-Kendall test statistic for 
autocorrelated data. The special cases of AR(I) and MA(1) dependence are discussed as examples. An approximation to the 
theoretical relationship is also presented in order to reduce computation time for long time series. Based on the modified value 
of the variance of the Mann Kendall trend test statistic, a modified non-parametric trend test which is suitable for auto- 
correlated data is proposed. The accuracy of the modified test in terms of its empirical significance level was found to be 
superior to that of the original Mann-Kendall trend test without any loss of power. The modified test is applied to rainfall as 
well as streamflow data to demonstrate its performance as compared to the original Mann-Kendall trend test. © 1998 Elsevier 
Science B.V. 
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I. I n t r o d u c t i o n  

Trend detection in hydrologic and water quality 
time series has received considerable attention in the 
recent past. In a number of studies on water quality 
data in lakes and streams (Lettenmaier, 1976, 1988; 
Hirsch et al., 1982; Van Belle and Hughes, 1984; 
Hirsch and Slack, 1984; Hipel et al., 1988; Taylor 
and Loftis, 1989; Zetterqvist, 1991; Bouchard and 
Haemmerli, 1992; Yu et al., 1993) and streamflow 
data (World Meteorological Organization, 1988; 
Mitosek, 1992; Chiew and McMahon, 1993; Burn, 
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1994) a number of parametric and non-parametric 
tests have been applied for trend detection. Both para- 
metric and non-parametric tests are commonly used. 
Parametric trend tests are more powerful than non- 
parametric ones, but they require data to be inde- 
pendent and normally distributed. On the other 
hand, non-parametric trend tests require only that 
the data be independent and can tolerate outliers in 
the data. 

One of the widely used non-parametric tests for 
detecting trends in the time series is the Mann 
Kendall test (Mann, 1945; Kendall, 1955). The 
Mann-Kenda l l  trend test is derived from a rank 
correlation test for two groups of observations 
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proposed by Kendall (1955). In the Mann-Kendall 
trend test, the correlation between the rank order of 
the observed values and their order in time is consid- 
ered. The null hypothesis for the Mann-Kendall test 
is that the data are independent and randomly ordered, 
i.e. there is no trend or serial correlation structure 
among the observations. However, in many real 
situations the observed data are autocorrelated. The 
autocorrelation in observed data will result in mis- 
interpretation of trend tests results. Cox and Stuart 
(1955) state that: 'Positive serial correlation among 
the observations would increase the chance of signifi- 
cant answer, even in the absence of a trend.' A closely 
related problem that has been studied is the case 
where seasonality exists in the data (Hirsch et al., 
1982). By dividing the observations into separate 
classes according to seasons and then performing 
the Mann-Kendall trend test on the sum of the statis- 
tics from each season, the effect of seasonality can be 
eliminated. This modification is called the seasonal 
Kendall test (Hirsch et al., 1982; Hirsch and Slack, 
1984; Zetterqvist, 1991). Although the seasonal test 
eliminates the effect of dependence between seasons, 
it does not account for the correlation in the series 
within seasons (Hirsch and Slack, 1984). The same 
problem exists when yearly data are analyzed, since 
they are often significantly autocorrelated. 

In this paper, theoretical results are presented 
about the evaluation of the mean and variance of the 
Mann-Kendall trend test statistic in the presence of 
autocorrelation. Based on these theoretical results, as 
well as on an empirical approximation, a modified 
Mann-Kendall trend test which is robust in the 
presence of autocorrelation is suggested and its 
empirical significance level and power are investi- 
gated. The test is applied to rainfall and streamflow 
data to demonstrate its performance. 

This paper is organized as follows. First, the origi- 
nal Mann-Kendall trend test is outlined in Section 2, 
and an alternative procedure is developed for evaluat- 
ing the variance of the test statistic. The effect of 
autocorrelation on the Mann-Kendall trend test is 
then investigated in Section 3. The special cases of 
MA(1) and AR(1) autocorrelation are discussed in 
Sections 4 and 5. In Sections 6 and 7 computational 
considerations are discussed and an approximation 
is given for evaluating the variance of the Mann- 
Kendall trend test statistic for autocorrelated data. 

The asymptotic normality of the test statistic for the 
case of autocorrelated data is discussed in Section 8. 
In Sections 9 and 10, a modified Mann-Kendall test is 
proposed and its accuracy and power are investigated. 
An application to rainfall and streamflow data is given 
in Section 11 to demonstrate the performance of 
the test. 

2. The original Mann-Kendall  trend test 

The rank correlation test (Kendall, 1955) for two 
sets of observations X = x l  , x2 , ' " ,Xn  and Y = Yl,Y2,'", 
Yn is formulated as follows. The statistic S is calcu- 
lated as in Eq. (1): 

S = Y~ a~jb O. ( 1 ) 
i<j 

where 

1 xi  < x j  

a 0 = sgn (x j  - x i )  = 0 xi  = x j  (2) 

- 1  x i > x j  

and b,j is similarly defined for the observations in Y. 
Under the null hypothesis that X and Y are inde- 
pendent and randomly ordered, the statistic S tends 
to normality for large n, with mean and variance 
given by: 

E ( S )  = 0 (3) 

var(S) = n(n  - 1) (2n + 5)/18 (4) 

If  the values in Y are replaced with the time order of 
the time series X, i.e. 1,2,...,n, the test can be used as 
a trend test (Mann, 1945). In this case, the statistic S 
reduces to that given in Eq. (5): 

S = Y. aij = Y~ sgn(xj - x i )  (5) 
i<j i<-j 

with the same mean and variance as in eqns (3) and 
(4). Kendall (1955) gives a proof of the asymptotic 
normality of the statistic S. The significance of trends 
is tested by comparing the standardized test statistic Z 
= S/[var(S)] °5 with the standard normal variate at the 
desired significance level. 

The derivation of the mean and variance of S 
is discussed in detail by Kendall (1955), Chapter 5). 
A slightly different approach, applicable to the 
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autocorrelated case, is developed in this paper. I f X i s  
normally distributed with mean g and variance a 2, 
then (xj - x~) will also be normally distributed with 
mean zero and variance 2a 2. We thus have 

1 
= • E[sgn(xj -x i )]  =P(xj - x i  > 0) 

i<j 

- P ( x j - x i  < 0 ) = 0  (6) 

The result in Eq. (6) follows from the fact that (xj - 
x~) is normally distributed with mean zero and 
variance 202 , which is symmetric around the origin. 
The variance o f  S is given by: 

var (S )=E(SZ)=E Z a  o. = E  Z (7) 
i i<jk<~a,jakl 

For a time series with n observations, the sum in 
Eq. (7) involves nZ(n - 1)2/4 terms (Kendall, 1955). 
It can be shown that if  the elements in X are inde- 
pendent and randomly ordered, the sum in Eq. (7) 
reduces to the three terms in Eq. (8) (Kendall, 1955): 

+ 6 E(aoakl) (8) 
4 

The first expectation in Eq. (8) accounts for terms 
with identical suffixes i andj.  The second expectation 
in Eq. (8) accounts for terms with one common 
suffix. The third expectation in Eq. (8) accounts for 
terms with distinct suffixes. For i :¢ j ,  a~. = 1 and thus 
E(a 2) is always equal to unity. Also, under the null 
hypothesis, xi, x j, xk, xt are independent for different 
suffixes i , j ,  k, l, so that Y = (xj - xi) and Z = (xl - xk) 
are also independent and E(ao.akl ) = E(ao.)E(akt ) = O, 
similar to Eq. (6). Now for the middle term in the 
RHS of  Eq. (8), consider Y = (xj - x i )  and Z = (xk - x i ) ,  
each of  which is N(0,2o2). Together, Y and Z are 
jointly normal with correlation p = _+ 0.5 depending 
on the order o f  the common suffix in Y and Z. It 
can be shown that for three given distinct indices i, 
j and k, the reverse order o f  the common suffix (aOaki o r  

aj,aik) occurs one-third o f  the time, giving rise to 
negative correlation, while the correct order (afl~k or 

aj,aki) occurs two-thirds o f  the time, giving rise to posi- 
tive correlation. For example i fn = 3, the sum involves 
the terms a21a31, a21a32 and a31 a32, from which the first 
and third terms are in the correct order while the second 
term is in the reverse order. Since a• for i # j  takes only 
the values 1 or -1,  the expected value ofaoaik is given 
by: 

E(aijaik ) = P(a~iaik = 1) - P(ao.aik = - 1) (9) 

The difference in probabilities in Eq. (9) is equal to 
the difference between the probabilities o f  positive 
and negative quadrants, which is given by Kendall 
and Stuart (1976) for the bivariate normal distribution 
as in Eq. (10): 

E(a~jaik ) = 2si n -  I (O) (10) 
71" 

In Eq. (10), p is the correlation between the two 
binormal variates Y and Z. For p = - 0.5, Eq. (10) 
reduces to E(avaik) = -- 1/3. Since the positive 
value o f  0 occurs two-thirds o f  the time while the 
negative value o f  p occurs one-third of  the time, 
we will have E(aijaik) = (1/3.2/3 - 1/3-1/3) = 1/9. 
The sum in Eq. (7) can now be calculated using 
only three terms in the RHS of  Eq. (8), where 
E(a2ij) = 1, E(aijaik) = 1/9, E(ao.ak~ ) = 0: 

var(S) = • 1 + 6 • ~ + 6 '0 
3 4 

n(n - 1)(2n + 5) 
= 18 (11) 

which is the same expression given by Kendall 
(1955). 

The assumption of  normally distributed X was 
used to derive Eq. (11), but in fact the test is non- 
parametric and does not depend on the distribution 
o f  X. In fact, Kendall 's proof does not take the dis- 
tribution o f  X into account, but rather assumes that 
all a~ are equally probable. In order to see that the 
variance o f  S does not depend on the distribution of  
X, consider the identity in Eq. (12), 

a~ = sgn(xj -x i )  = sgn[R(xj) - R(xi) ] (12) 

where R(xi) is the rank o fx i .  According to Eq. (12) 
the value o f  a o. does not depend on the actual distri- 
bution o f  X, because if  the data were to be trans- 
formed to normality using a suitable technique, the 
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ranks o f  X values would not change. Indeed, all three 
expectations used in Eq. (11) to evaluate the variance 
o f  S do not depend on the distribution of  X. There- 
fore, transformation of  the data to normal, although 
possible (cf. Grigoriu, 1995), would not change the 
expected value o f  the statistic S or its variance. It is 
understood that the above comments apply only to 
monotonic transformations, since non-monotonic 
transformations would destroy trend information. 

3. The effect of  autocorrelation 

A numerical examp!e is given to illustrate the 
effect of  serial correlation on the Mann-Kendal l  
trend test. Fig. 1 shows two time series X and Y 
each of  length n = 100 observations. Visual inspection 
of  the two time series would not indicate a large 
difference in the apparent trends for the two series. 
In fact, series X is stationary white noise, while series 
Y is generated as an AR(1) series with ~b = 0.4 using 
series X as the input noise. Thus both series are 
stationary without trend. The test statistics for the 

two series from Eq. (5) are S(X) = 557 and S(Y) = 
793. With n = 100, the variance from Eq. (4) is 
given by var(S) = 112 750 in both cases. The standard- 
ized test statistics are Z(X) = S(X)/[var(S)] °5 = 1.66 
and Z(Y) = S(Y)/[var(S)] °5 = 2.36. This result would 
indicate that at 5% significance level (Zcr = 1.96), 
series Y has a significant positive trend. In fact this 
result is only due to the effect o f  autocorrelation 
between Y values, since Z(X) for the uncorrelated 
series X is not significant. The reason for Z(Y) being 
larger is that the variance of  S is underestimated when 
the data are positively autocorrelated. This aspect is 
discussed later. 

In the case o f  autocorrelation between the values 
o f  X, the second and third terms in Eq. (8) will be 
different than they are for the uncorrelated case. In 
particular, the third expectation is no longer equal to 
zero. Starting with normally distributed X, consider 
again Y = x j  - x i  and Z = xl - xk. For convenience, 
assume that var(x/) = 1 and cov(xi,xj) = PfJ - i). Note 
that P is a symmetric function, o ( i  - j )  = O(/" - i)  and 
o(0) = 1. We thus have 

var(Y) = 2 - 20(/" - i) (13) 

3 ,  , ° , , , , , , o 
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> 
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Fig.  1. The  effect  o f  au tocor re la t ion  on the M a n n - K e n d a l l  test. 
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var(Z) = 2 - 2p(l  - k) (14) 

c o v ( Y , Z ) = o ( j - l ) - o ( i - l ) - p ( j - k ) + o ( i - k )  (15) 

The correlation between Y and Z is thus given by: 

p(j - l) - p(i  - l) - p(j - k) + p(i - k) 
COrr(Y'Z)=rOkl= 2V/[1 - p(/-- i)][1 - p ( l - k ) ]  

(16) 

Since X is normally distributed, Y and Z will be dis- 
tributed as bivariate normal with correlation given by 
Eq. (16). The result in Eq. (10) can therefore be used 
to get the expression for E(ai#kt) in Eq. (17): 

E(aijakl) = 2s in -  1 (r#kl) (17) 
71" 

The expected value of  S is given by Eq. (18), since 
xi - xj is N(0,2 - 2p(j - i)) which is still symmetric 
around zero: 

The variance of  S is given by: 

v a r ( S ) = E ( S 2 ) = E I Z  1 =  ~ (19) 
i<jk<lSijak/ i<jk<lE(aijak/) 

where E(aoakt ) is given by Eq. (17). 
In general, the distribution of  X m a y  not necessarily 

be normal in real data. The expected value of  S will 
not change for different distributions. This is due to 
the fact that xi - xj is always symmetric around zero, 
regardless o f  the distribution of  X. In fact, the variance 
of  S will not depend on the distribution of  X either, 
for the same reasons mentioned in Section 2. How- 
ever, in order to evaluate the variance of  S for X with 
an arbitrary distribution, two pieces of  information are 
needed. The first is the autocorrelation between the 
data, and the second is the equivalent of  the relation- 
ship in Eq. (10) for that particular distribution. Such 
relationships are not available for distributions other 
than the bivariate normal distribution. Fortunately, 
data need not be transformed to normal, for all that 
is sought is the autocorrelation structure of  the 
normalized data, not the transformed data themselves. 
An estimate of  the autocorrelation of  the normalized 
data can be obtained by first calculating the auto- 
correlation between the ranks of  the observations, 

denoted os(i). Since the ranks of  the observations 
are used, ps(i) is independent o f  the distribution of  
X. The expression in Eq. (20), given by Kendall 
(1955), which relates the parent correlation P for 
two normal samples to their rank correlation Ps, is 
then used to transform rank autocorrelation to normal- 
ized data autocorrelation: 

p( i )=2  sin ( 6os ( i ) )  (20) 

Using the values of  o(i) in Eq. (20) with eqns (16)-  
(19), the correct variance of  S can be calculated inde- 
pendent of  the distribution of  X, by using the auto- 
correlation of  the ranks. This result is applicable to 
any general autocorrelation structure in the data. Next 
we give some particular results for specific forms of  
the autocorrelation function p(i) as examples. 

4. The MA(1) model 

The MA(1) model is in the form off 

xt = et +Oet 1 (21) 

where et is N(O,oe2). In this case the autocorrelation 
function p(i) is given by: 

1 i = 0  

0 
p(/)= (1 + 02------- ~ i=1  (22) 

0 i > 1  

Due to the fact that p(i) vanishes for i > 1, many of  
the terms in the sum in the RHS of  Eq. (19) will 
vanish, leaving only 16 terms to be evaluated. 
These 16 terms are the result of  different combina- 
tions of  the terms E(aijakl) = E[sgn(xj - xi)'sgn- 
(x t - xk) ]. For example, i f j  = l and i = k, then from 
Eq. (16) r,jkt = 1; i f j = l ,  [i - k[ > 1, [i - j [  > l and 
[ k - j [  > 1, then ruk t = 0.50; and i f j  = l, [i - k[ = 1, 
[i - j [  > 1 and Ik - j [  > 1, then ruk t = (1 + 0)/2. Other 
terms can be identified in a similar manner by con- 
sidering the relationship between the different 
suffixes. By using eqns (16)-(20)  the variance of  S 
in the MA(1) case is given by: 

16 2 1 
V(S) = Y ny . -  sin rj (23) 

j = l  71" 

In Eq. (23) n: and their corresponding r: are functions 
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Table 1 

Theoretical values of V(S)/var(S) for the MA(1) model for different values of 0 and n 

187 

n 0 
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 

10 1.13 1.25 1.37 1.47 1.55 1.62 1.66 1.69 1.71 1.71 
20 1.16 1.30 1.44 1.55 1.65 1.72 1.77 1.80 1.82 1.82 

30 1.17 1.32 1.47 1.59 1.68 1.76 1.81 1.84 1.86 1.87 
50 1.17 1.34 1.49 1.62 1.72 1.79 1.85 1.88 1.90 1.90 
100 1.18 1.35 1.51 1.64 1.74 1.82 1.88 1.91 1.93 1.93 
120 1.18 1.36 1.51 1.64 1.75 1.83 1.88 1.91 1.93 1.94 

0 
0.1 -0.2 0.3 -0.4 -0.5 -0.6 -0.7 -0.8 0.9 -1.0 

10 0.87 0.76 0.65 0.57 0.50 0.45 0.41 0.39 0.38 0.37 
20 0.85 0,70 0.57 0.46 0.38 0.31 0.26 0.24 0.22 0.22 
30 0.83 0.68 0.54 0.42 0.33 0.26 0.21 0.18 0.16 0.16 
50 0.83 0.66 0.51 0.39 0.29 0.22 0.17 0.13 0.12 0.11 

100 0.82 0.65 0.49 0.36 0.26 0.18 0.13 0.10 0.08 0.07 
200 0.82 0.64 0.49 0.36 0.26 0.18 0.12 0.09 0.07 0.07 

of the time series length n and p(i) in Eq. (22) 
(Hamed and Rao, 1997). 

Table 1 gives the theoretical values of  V(S)/var(S) 
for different values of 0 and for n = 10, 20, 30, 50, 100 
and 120, based on V(S) given by Eq. (23) and var(S) 
given by Eq. (4) for the uncorrelated case. To verify 
the validity of  the theoretical values in Table 1, 
numerical simulation was used. One hundred sets, 
each with 200 realizations of the time series in 
Eq. (21) were obtained and the variance of S was 
calculated by using the simulated time series. The 
results from these simulations were found to confirm 
the validity of  the theoretical approach (Hamed and 
Rao, 1997). 

As can be seen from Table 1, positive autocorrela- 
tion will result in the increase of  V(S) and thus the 
variance of S will be underestimated by the original 
var(S). Thus, if the original Mann-Kendall test is used 
for testing trends in positively autocorrelated data, 
it will indicate significant trends, when actually no 
trends exist. Negative autocorrelation in the data, on 
the other hand, produces an opposite effect by redu- 
cing the variance of S. 

5. The AR(1) model 

The AR(1) model is of  the form of: 

Xt = ~ X t -  1 + 8t (24) 

In this case, the autocorrelation function is given by: 

p(i) = ~b Iil (25) 

From the results presented in the previous section, it 
is seen that the number of  terms to be evaluated in the 
sum in the RHS of Eq. (19) reduces to only 16 terms 
for the MA(1) model, because p(i) vanishes for i > 1. 
This is not, however, the cae for an AR(1) model or a 
model with a general autocorrelation structure, and 
all n2(n - 1)2/4 terms in Eq. (19) will be non-zero. 
Expectations needed for the sum in the RHS of 
Eq. (19) must be calculated for each term using 
eqns (16) and (17). Each set of  subscripts i, j ,  k and 
l will have a different value of rijkl in Eq. (16) depend- 
ing on the values of  the indices. Table 2 gives the 
theoretical values of  V(S)/var(S) in the AR(1) case, 
for different values of ~ and for n = 10, 20, 30, 50, 
100 and 120, where V(S) is calculated by using 
eqns (16), (17) and (19), and p(i) in Eq. (16) is 
given by Eq. (25). The results from numerical simu- 
lation again confirm the validity of the theoretical 
approach (Hamed and Rao, 1997). 

The same results obtained in the MA(1) case con- 
cerning the effect of autocorrelation are observed for 
the AR(1) model. Positive autocorrelation increases 
the variance of S and vice versa. However, the effect 
in the case of  the AR(1) model is much larger than in 
the case of the MA(1) model, because the autocorre- 
lation extends beyond the first lag for the AR(1) 
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Table 2 

Theoretical values of V(S)/var(S) for the AR(1) model for different values of 0 and n 

n 
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 

10 1.14 1.30 1.49 1.72 1.99 2.33 2.74 3.25 3.89 
20 1.17 1.38 1.64 1.96 2.38 2.96 3.76 4.94 6.78 

30 1.18 1.41 1.69 2.06 2.55 3.23 4.24 5.88 8.85 
50 1.19 1.44 1.74 2.14 2.69 3.47 4.70 6.85 11.48 
100 1.20 1.46 1.78 2.21 2.80 3.67 5.08 7.72 14.42 
120 1.20 1.46 1.79 2.22 2.82 3.71 5.15 7.88 15.01 

-0.1 -0.2 -0.3 -0.4 -0.5 -0.6 -0.7 -0.8 -0.9 

10 0.88 0.78 0.69 0.60 0.53 0.46 0.40 0.35 0.31 
20 0.86 0.73 0.63 0.53 0.45 0.37 0.31 0.25 0.19 
30 0.85 0.72 0.61 0.51 0.42 0.34 0.27 0.21 0.15 
50 0.84 0.70 0.59 0.49 0.39 0.31 0.24 0.17 0.11 

100 0.83 0.69 0.57 0.47 0.37 0.29 0.22 0.15 0.09 
200 0.83 0.69 0.57 0.46 0.37 0.29 0.21 0.14 0.08 

model. For example, the variance of S for AR(1) with 
n = 120 and 4~ = 0.9 is 15 times as large as that for 
uncorrelated data. 

6. C o m p u t a t i o n a l  c o n s i d e r a t i o n s  

For an arbitrary autocorrelation function, similar 
to the case of the AR(1) model, the number of  terms 
required to evaluate the variance orS by using Eq. (19) 
will be of  order n4/4. Therefore, time series with a 
large number of observations n will require a large 
number of  calculations to evaluate the variance of S. 
This will not be suitable for use as a routine calcula- 
tion, especially when a large number of  time series are 
to be analyzed. Nevertheless, the values obtained by 
using the theoretical approach are valuable as a guide 
for selecting an approximation to the theoretical 
values which requires less computational effort. In 
the next section an empirical approximate formula is 
developed for calculating the variance of S for the 
case where autocorrelation exists in the data. The 
approximate formula requires a few calculations of  
order n at most, while providing a satisfactory 
approximation to the computationally demanding 
theoretical formula in Eq. (19). 

7. A p p r o x i m a t e  f o r m u l a  for ca l cu la t ing  V(S) 

Bayley and Hammersley (1946) studied the 

variance of the mean of a sample of  size n when the 
data are autocorrelated. In the case of  uncorrelated 
data the variance of the mean is given by: 

t7 2 
var(~) = - -  (26) 

n 

where a 2 is the variance of X. However, when the 
data are autocorrelated the variance is underestimated 
by Eq. (26). The correct variance of the mean in the 
case of  autocorrelated data is shown by Bayley and 
Hammersley (1946) to be given by: 

if2 
V(2) = ~ = var(Y)' nn~ (27) 

where var(~) is given by Eq. (26) and n~ is given by 
the expression in Eq. (28), in which O(/) is the auto- 
correlation function of the data and n is the actual 
number of observations. 

1 1 2 " j 
n b*- n ÷ ~j=~:1 (n-j)p(]) (28) 

The value of n b is considered as an 'effective' 
number of  observations, to account for the autocorre- 
lation in the data. 

By analogy to the case considered by Bayley 
and Hammersley, we suggest an empirical formula 
for calculating the variance of S in the case of  
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Fig. 2. The distribution of the statistic S as compared to the normal distribution for 4~ = 0.9 and different sample sizes n. 

autocorrelated data similar to that in Eq. (27): 

, n n ( n -  1) (2n+5)  n (29) 
V (S) = var(S)" ~s = 18 n-~s 

where n/ns  represents a correction due to the auto- 
correlation in the data. An expression is needed for 
evaluating n/n*s. Although suggested by Lettenmaier 
(1976), the use of  the same expression in Eq. (28) 
for nb to evaluate ns does not produce values of  
V*(S) that are comparable to the theoretical values 
in the cases of  the MA(1) and AR(1) models in 
Tables 1 and 2, respectively. A closer look at the 
structure of the statistic S indicates that the use of 
the autocorrelation between the ranks is more appro- 
priate that using the autocorrelation from the data. 
Also, the number of terms involved in calculating 
S is not n, as in the case of Bayley and Hammersley, 
but rather n(n - 1). After considering a number of  
alternative forms to Eq. (28), the best approxi- 
mation to the theoretical values was obtained by 
using n/n*s given by the empirical expression in 

Eq. (30): 

n 2 
- - - - 1 +  
n s n ( n -  1)(n- 2) 

n - I  

x • ( n - i ) ( n - i -  1 ) (n - i -2 )Os ( i )  (30) 
i = 1  

where n is the actual number of observations and 
os(i) is the autocorrelation function of the ranks of 
the observations. One advantage of using the approxi- 
mation in Eq. (30) is that by using the ranks of  the 
observations, the variance of S can be evaluated 
using eqns (29) and (30) without the need for either 
the normalized data or their autocorrelation function, 
as was the case with Eq. (19). Values of the variance 
calculated by using Eq. (29) were found to be in good 
agreement with the theoretical values in Tables 1 and 
2 (Hamed and Rao, 1997). The accuracy of the 
approximation given by Eq. (29) was also found to 
improve as n increased. The approximation in 
Eq. (29) can therefore be used to obtain accurate 
estimates of  the variance of S, based on the auto- 
correlation between the ranks of  the observations, 
with much less computational effort. 
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8. Asymptotic normality 

A mathematical proof of the asymptotic normality 
of S was not attempted in the case where the data 
are autocorrelated. However, the distribution of S 
was empirically investigated through numerical simu- 
lation. Fig. 2 shows the empirical distribution of the 
standardized normal test statistic Z = S/[var(S)] °5 for 
an AR(1) model with ~ = 0.9 and n = 60, 120 and 240 
using 2500 data sets. Although 0 = 0.9 represents an 
extreme case, it is clear from Fig. 2 that as n increases 
the distribution of S tends to normality even for 4~ as 
large as 0.9. The tail probability values for various 
AR(1) and ARMA(1,1) simulated series were also 
found to approach those of the normal distribution 
as n increases (Hamed and Rao, 1997). From these 
results we conclude that the asymptotic normality 
assumption for S does not seem to be affected by 
the existence of autocorrelation in the data. 

rejected by the test under Ho of no trend when in fact 
Ho is true. This probability is the percentage of 
samples rejected by the test under Ho, and should be 
equal to the nominal significance level a of the test, 
provided that the normal distribution with mean zero 
and variance equal to var(S) is the correct distribution 
of S. The second property is the power of the test, 
defined as the probability of rejecting Ho when the 
alternative hypothesis is true. This probability is the 
percentage of samples rejected by the test when a 
trend of a certain slope exists in the data. The power 
of a good test should increase rapidly as the slope of 
the trend departs from zero. A number of numerical 
simulations were used to evaluate the performance 
of the modified test compared to the original Mann- 
Kendall trend test. Samples of size 2000 from 
uncorrelated data, AR(l) and ARMA(1,1) models 
were generated. The AR(1) model is characterized 
by ~ as in Eq. (24). The ARMA(1,1) model is of the 
form of: 

9. A modified Mann-Kendal l  test 

A modified version of the Mann-Kendall test 
which is robust in the presence of autocorrelation is 
proposed, based on the modified variance of S given 
by Eq. (19) and its approximation in Eq. (29). The 
autocorrelation between the ranks of the observations, 
ps(i), is first evaluated. The values of ps(i), however, 
must be calculated after subtracting a suitable non- 
parametric trend estimator (Sen, 1968; Zetterqvist, 
1991). Sample estimates of the autocorrelation have 
a variance of order 1/n (Kendall, 1955). Due to the 
nature of the calculations in eqns (19) and (29), which 
involve a large number of terms, it was found that 
insignificant values of ps(i) will have an adverse 
effect on the accuracy of the estimated variance of 
S. Therefore, only significant os(i) values are used 
in Eq. (30). This is achieved by requiring a suitable 
pre-set significance level for the autocorrelations to 
be included in the calculations, which can be taken 
equal to that of the test. 

There are two important properties of a statistical 
test that are investigated to evaluate its performance. 
The first property is the empirical significance level 
of the test, defined as the probability of rejecting 
the null hypothesis Ho of no trend when in fact Ho 
is true. This probability is the percentage of samples 

xt=chxt l+et+Oet i (33) 

The ARMA(1,1) model is characterized by 0 and 
p(1), where 0(1) is given by: 

(1 - ,~0)(~ - 0) 
o(1)= 1_200+02 (34) 

Table 3 gives the empirical significance level of 
the original Mann-Kendall trend test. The empirical 
significance levels in Table 3 are in large error com- 
pared to the nominal values of the significance level 
o~. This is due to the underestimation of the variance 
of S when the autocorrelation in the data is ignored. 
For example, for n = 120 and AR(1) with 0 = 0.6 for 
a nominal significance level of c~ = 0.05, one would 
expect to reject 50 samples out of I000, while the 
original test rejects 186 samples. As expected, the 
error in the significance level increases as the auto- 
correlation increases, as seen from the results in 
Table 3. 

Table 4 gives the empirical significance level of 
the modified test. The variance of S was calculated 
using the approximation in Eq. (29), where ps(i) is 
calculated from p(i) using the inverse of Eq. (20). A 
significance level of a = 0.1 for the autocorrelation of 
the ranks ps(i) was used, which produced the best 
overall empirical significance levels. Comparing the 
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Table 3 
The original Mann-Kendall test empirical significance level (2000 samples) 

n $ o(1) Nominal significance level a 

0.010 0.020 0.050 0.100 0.200 

60 0.0 0.0 0.011 0.020 0.052 0.105 0.199 

0.2 0.2 0.028 0.045 0.087 0.144 0.233 

0.4 0.2 0.065 0.091 0.141 0.199 0.283 

0.4 0.057 0.083 0.142 0.205 0.282 

0.6 0.2 0.134 0.163 0.227 0.276 0.346 

0.4 0.133 0.166 0.221 0.269 0.348 

0.6 0.110 0.139 0.201 0.259 0.327 

0.9 0.2 0.299 0.328 0.363 0.386 0.423 
0.4 0.279 0.300 0.335 0.369 0.405 

0.6 0.301 0.323 0.362 0.387 0.423 

120 0.0 0.0 0.006 0.021 0.055 0.104 0.207 

0.2 0.2 0.023 0.039 0.079 0.131 0.234 

0.4 0.2 0.076 0.107 0.169 0.229 0.322 

0.4 0.060 0.086 0.143 0.202 0.290 

0.6 0.2 0.139 0.173 0.233 0.288 0.358 

0.4 0.131 0.163 0.209 0.260 0.341 

0.6 0.110 0.134 0.186 0.244 0.326 

0.9 0.2 0.299 0.324 0.359 0.385 0.427 

0.4 0.292 0.311 0.349 0.386 0.428 

0.6 0.301 0.326 0.356 0.387 0.426 

240 0.0 0.0 0.011 0.022 0.052 0.104 0.209 

0.2 0.2 0.026 0.046 0.148 0.206 0.298 
0.4 0.2 0.075 0.098 0.148 0.206 0.298 

0.4 0.060 0.082 0.142 0.207 0.302 

0.6 0.2 0.148 0.185 0.239 0.293 0.368 
0.4 0.141 0.171 0.227 0.275 0.346 

0.6 0.122 0.160 0.212 0.272 0.364 

0.9 0.2 0.290 0.315 0.351 0.382 0.414 

0.4 0.296 0.321 0.353 0.386 0.426 

0.6 0.301 0.326 0.356 0.387 0.426 

Control limits ot _+ 2[~(1 - x)/2000] 1,'2 for the empirical level; for a nominal level a are: u = 0.01,0.006-0.014; a = 0.02, 0.014-0.026; a = 0.05, 

0.04-0.06; ~ = 0.10, 0.087-0.113; ~ = 0.20, 0.182-0.218. 

results in Tables 3 and 4, it is seen that the modified 
test gives more accurate empirical levels, compared 
to the nominal significance level a, than does the 
original Mann-Kendall  test. For example, when test- 
ing at a nominal significance level a = 0.02 one would 
expect to reject 20 samples out o f  1000. For n = 120, ~b 
= 0.6 and O(1) = 0.4 the number of  samples rejected by 
the original Mann-Kendall  test in Table 3 is 163, 
which is much larger than 20, while the number of  
samples rejected by the modified test in Table 4 is 31, 
which is closer to 20. The empirical significance 
levels in Table 4, however, become less accurate 
compared to the nominal significance levels when 
large autocorrelations are present and the number of  
observations n is small. This is not suprising because 

by almost any measure or technique it is very hard to 
distinguish strong persistence from trend (Hirsch and 
Slack, 1984). 

I0. Power of  the modified test 

The proposed modification of  the Mann Kendall 
trend test is based on the assumption that data are 
autocorrelated, and therefore the autocorrelation is 
estimated from the data. When the data are actually 
independent, the assumption of  autocorrelation may 
lead, in some cases, to failure to identify true trends, 
thus reducing the power of  the test. This is due to 
the uncertainties in evaluating the autocorrelation in 
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Table 4 
Modified test empirical significance level (2000 samples) 

n 6 p(1) Nominal significance level 

0.010 0.020 0.050 0.100 0.200 

60 0.0 0.0 0.020 0.027 0.057 0.109 0.204 
0.2 0.2 0.022 0.038 0.069 0.121 0.221 
0.4 0.2 0.025 0.036 0.065 0.I 18 0.210 

0.4 0.024 0.041 0.077 0.136 0.234 
0.6 0.2 0.033 0.047 0.095 0.158 0.254 

0.4 0.029 0.046 0.095 0.158 0.254 
0.6 0.034 0.050 0.096 0.147 0.251 

0.9 0.2 0.081 0.118 0.180 0.247 0.325 
0.4 0.288 0.110 0.164 0.223 0.305 
0.6 0.089 0.125 0.188 0.246 0.330 

120 0.0 0.0 0.009 0.024 0.059 0.108 0.209 
0.2 0.2 0.015 0.026 0.059 0.103 0.204 
0.4 0.2 0.017 0.029 0.165 0.128 0.233 

0.4 0.021 0.034 0.064 0.128 0.227 
0.6 0.2 0.026 0.038 0.077 0.126 0.244 

0.4 0.021 0.031 0.072 0.129 0.223 
0.6 0.026 0.042 0.07 l 0.124 0.216 

0.9 0.2 0.061 0.084 0.135 0.196 0.286 
0.4 0.054 0.077 0.126 0.193 0.275 
0.6 0.061 0.088 0.142 0.198 0.290 

240 0.0 0.0 0.012 0.022 0.054 0.105 0.211 
0.2 0.2 0.013 0.022 0.054 0.103 0.211 
0.4 0.2 0.010 0.019 0.052 0.104 0. 197 

0.4 0.018 0.031 0.061 0.113 0.222 
0.6 0.2 0.022 0.034 0.066 0.121 0.230 

0.4 0.019 0.034 0.063 0.124 0.224 
0.6 0.013 0.028 0.064 0.122 0.230 

0.9 0.2 0.035 0.047 0.093 0.153 0.249 
0.4 0.031 0.048 0.089 O. 146 0.239 
0.6 0.034 0.053 0.110 0.157 0.245 

Control limits ot _+ 2[¢~(1 - x)/2000] i/z for the empirical level; for a nominal level ot are: ~ = 0.01,0.00-0.014; a = 0.02, 0.014-0.026; ~ = 0.05, 
0.04-0.06; c¢ = 0.10, 0.087-0.113; ~ = 0.20, 0.182-0.218. 

the  data,  e spec ia l ly  w i th  smal l  samples .  For  example ,  

the  seasona l  K e n d a l l  tes t  (H i r sch  and  Slack,  1984) is 

less power fu l  w h e n  the  co r re l a t ion  b e t w e e n  seasons  

is t aken  into a c c o u n t  than  w h e n  the  co r re l a t ion  is 

neg lec ted .  Tab le  5 g ives  the  p o w e r  o f  the  mod i f i ed  

test,  d e n o t e d  b y  M, u s ing  500 s i m u l a t e d  samples  o f  

i n d e p e n d e n t  data,  e ach  o f  size n = 60, c o m p a r e d  to the  

p o w e r  o f  the  o r ig ina l  M a n n - K e n d a l l  t r end  test,  

d e n o t e d  by  O. The  t r end  in Tab le  5 is exp re s sed  as a 

p e r c e n t a g e  o f  the  s t anda rd  dev i a t i on  o f  the  process .  

It can  be  seen  f rom Tab le  5 tha t  the  p o w e r  o f  the  

p r o p o s e d  mod i f i ed  tes t  is c o m p a r a b l e  to tha t  o f  

the  o r ig ina l  M a n n - K e n d a l l  test. There fo re ,  the re  

is no  loss o f  p o w e r  w h e n  the  p r o p o s e d  mod i f i ca t i on  

is adopted  to accoun t  for the  au tocor re la t ion  in the data. 

11. Application to hydrologic data 

T w o  e x a m p l e s  are g i v e n  here  for  the  app l i ca t ion  

o f  the  mod i f i ed  tes t  to hyd ro log i c  data.  The  first 

e x a m p l e  invo lves  ra infa l l  data,  w h i l e  the  s econd  

e x a m p l e  invo lves  s t r eamf low data.  Fig. 3 shows  two 

a n n u a l  d iv i s iona l  ave rage  ra infa l l  t ime  ser ies  f rom the  

N a t i o n a l  C l ima t i c  Da t a  C e n t e r  da t abase  (Na t iona l  

C l ima t i c  Da t a  Center ,  1991) for  d iv i s ions  2 in Ind iana  

( IN02)  and  1 in Oh io  (OH01) .  The  t ime  series  ex t end  

f rom 1895 to 1992 w i th  a l eng th  o f  98 years .  Bo th  

the  o r ig ina l  and  mod i f i ed  tes ts  we re  app l i ed  to the  

t ime  ser ies  at the  5 %  s ign i f icance  level .  To apply  

the  mod i f i ed  test, a n o n - p a r a m e t r i c  t rend  es t ima te  

(Sen,  1968) is first sub t rac ted  f rom the  t ime  ser ies  
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Table 5 

Power of the modified test using 500 samples of sample size n = 60 of independent data compared to the power of the original Mann-Kendall 
test 

Trend (%) Test Significance level 

0.010 0.020 0.050 0.100 0.200 

0.00 M 0.022 0.040 0.076 0.102 0.192 
O 0.008 0.026 0.062 0.102 0.192 

0.50 M 0.060 0.102 0.184 0.292 0.446 
O 0.042 0.072 0.178 0.280 0.418 

1.00 M 0.198 0.264 0.408 0.526 0.684 
O 0.162 0.232 0.378 0.506 0.662 

1.50 M 0.378 0.498 0.634 0.760 0.862 
O 0.332 0.452 0.616 0.762 0.854 

2.00 M 0.612 0.724 0.846 0.926 0.958 
O 0.560 0.684 0.824 0.914 0.956 

2.50 M 0.820 0.900 0.958 0.984 0.994 
O 0.786 0.880 0.964 0.986 0.996 

3.00 M 0.944 0.964 0.980 0.992 0.998 
O 0.940 0.966 0.984 0.990 0.998 

3.50 M 0.984 0.994 0.996 0.998 1.000 
O 0.978 0.992 0.998 1.000 1.000 

4.00 M 0.994 0.996 0.998 1.000 1.000 
O 0.996 0.996 0.996 1.000 1.000 

and  the  au toco r r e l a t i on  b e t w e e n  the  r anks  o f  the  

o b s e r v a t i o n s  is ca lcu la ted .  A u t o c o r r e l a t i o n s  w h i c h  

are s ign i f ican t  at the  5 %  level  are  then  u sed  for  eval -  

ua t ing  the  mod i f i ed  va r i ance  o f  S u s ing  eqns  (29)  and  

(30).  The  s ign i f ican t  au t oco r r e l a t i ons  are g i v e n  in 

Tab le  6 for e ach  o f  the  t ime  series,  as wel l  as the  

rat io  b e t w e e n  the  o r ig ina l  and  mod i f i ed  v a r i a n c e  and  

the  va lues  o f  the  o r ig ina l  and  mod i f i ed  tes t  s tat is t ics .  

It can  be  seen  in T a b l e  6 tha t  the  ex i s t ence  o f  n e g a t i v e  

au toco r r e l a t i on  in the  t w o  t ime  ser ies  resul t s  in the  

r educ t ion  o f  the  v a r i a n c e  o f  S to 0 .40 and  0.62 o f  

the i r  o r ig ina l  va lues ,  r espec t ive ly .  This ,  in turn,  

resul t s  in the  fa i lure  o f  the  or ig ina l  tes t  to iden t i fy  

s ign i f ican t  t r ends  in these  two t ime  ser ies  at the  5 %  

s ign i f i cance  level .  

The  s e c o n d  e x a m p l e  invo lves  an  annua l  ave r age  

r iver f low t ime  ser ies  f rom the  C e d a r  R i v e r  at C e d a r  

Rapids ,  IA  ( U S G S  s ta t ion  No.  0 5 4 6 4 5 0 0 )  ( U n i t e d  

States  G e o l o g i c a l  Survey ,  1992). The  t ime  ser ies  

ex t ends  f rom 1903 to 1992 wi th  a l eng th  o f  90 years  

Table 6 
Test results using the original modified tests for two NCDC divisional rainfall times series and a USGS riverflow time series 

Site name Significant autocorrelationat 5% level Value of V*(S)/var(S) Original statistic Z Modified statistic Z 

Lag i p(i) 

IN02 1 -0.1997 0.40 1.71 2.69" 
19 -0.2020 
1 -0.1888 

OH01 11 0.1797 0.62 1.69 2.14" 
12 -0.1942 

CEDAR 1 0.2474 
9 0.2142 1.52 1.97" 1.60 
16 -0.2397 

*Value is significant at significance level ot = 0.5. 
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Fig. 3. NCDC divisional average time series (a) division 2 in Indiana, and (b) division 1 in Ohio. 

and is shown in Fig. 4. Similar to the previous 
example, the modified variance o f  S is calculated 
using eqns (29) and (30) and autocorrelations which 
are significant at the 5% level. The significant auto- 
correlations are given in Table 6 for the time series, 
as well as the ratio between the original and modified 
variance and the values o f  the original and modi- 
fied test statistics. The modified variance in this 
case was found to be 1.52 times the variance o f  
the original test as given by Eq. (4). Hence, while 
the original test statistic o f  1.97 indicates a significant 
trend at the 5% level, the modified test statistic of  
1.6 is not significant at the same significance level 
when autocorrelation is taken into consideration. 

In this case, the existence of  positive autocorrelation 
in the data resulted in the trend in this time series 
being falsely identified as significant at the 5% 
level, while in fact the trend is insignificant at that 
level. 

It is clear from the above two examples that the 
existence o f  either positive or negative autocorrela- 
tion in time series will interfere with proper identifi- 
cation o f  significant trends. The proposed trend test 
offers a simple, easy to calculate modification to 
account for autocorrelation in the data. As shown in 
the previous sections, the modification does not affect 
the power of  the test while offering more accurate 
significance levels. 
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Fig. 4. Flow time series from USGS station No. 05464500, Cedar River at Cedar Rapids, IA. 
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12. Conclusions 
A theoret ical  re lat ionship is der ived  for eva lua t ing  

the var iance  o f  the M a n n - K e n d a l l  statistic S for data 

with autocorrelat ion.  An  approximat ion  to the theo- 

ret ical  va lue  o f  the invar iance  o f  S, which  is useful  

for large samples ,  is also given.  A modi f ied  trend test, 

which  is robust  in the presence  o f  autocorre la t ion  in 

the data is p roposed  based on the modif ied  var iance  

o f  S. The  s ignif icance level  and power  o f  both the 

or iginal  and modif ied  tests were  compared  through 

simulat ion.  When  autocorre la t ion  exists in the data, 

the empir ica l  s ignif icance levels  o f  the or iginal  

M a n n - K e n d a l l  t rend test are in large error compared  

to the nomina l  s ignif icance levels.  On the other  hand, 

the empir ica l  s ignif icance levels  o f  the p roposed  

modif ied  test are much  closer  to the correct  nomina l  

s ignif icance levels.  The p o w e r  o f  the p roposed  

modi f ied  test is comparab le  to that o f  the or iginal  

M a n n - K e n d a l l  test when  the data are actual ly  inde- 
pendent .  Example s  for the appl icat ion o f  the modif ied  

test to rainfall  as wel l  as s t reamflow t ime series were  
also presented,  and the pe r fo rmance  o f  the test was 

discussed. 
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