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Empirical Orthogonal Function AnalysisEmpirical Orthogonal Function Analysis

Empirical Orthogonal Function (EOF) analysis attempts to 
find a relatively small number of independent variables 
(predictors; factors) which convey as much of the original 
information as possible without redundancy.

EOF analysis can be used to explore the structure of the 
variability within a data set in a objective way, and to 
analyze relationships within a set of variables.

EOF analysis is also called principal component analysis 
or factor analysis.
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What Does EOF Analysis do?What Does EOF Analysis do?
In brief, EOF analysis uses a set of orthogonal functions 
(EOFs) to represent a time series in the following way:

Z(x,y,t) is the original time series as a function of time (t) 
and space (x, y).

EOF(x, y) show the spatial structures (x, y) of the major 
factors that can account for the temporal variations of Z.

PC(t) is the principal component that tells you how the 
amplitude of each EOF varies with time.
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What Do You Get from EOF?What Do You Get from EOF?
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An ExampleAn Example

Principal Component

Leading EOF Mode
We apply EOF analysis to a 

50-year long time series of 
Pacific SST variation from a  
model simulation.

The leading EOF mode shows 
a ENSO SST pattern. The EOF 
analysis tells us that ENSO is the 
dominant process that produce 
SST variations in this 50-year 
long model simulation.

The principal component tells 
us which year has a El Nino or La 
Nina, and how strong they are.
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Another View of the RotationAnother View of the Rotation
(from Hartmann 2003)

PC1
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Rotation of Coordinates Rotation of Coordinates 
Suppose the Pacific SSTs are described by values at grid points: x1, x2, 
x3, ...xN. We know that the xi’s are probably correlated with each other. 

Now, we want to determine a new set of independent predictors zi to 
describe the state of Pacific SST, which are linear combinations of xi:

Mathematically, we are rotating the old set of variable (x) to a new set 
of variable (z) using a projection matrix (e):

PC EOF
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Determine the Projection CoefficientsDetermine the Projection Coefficients
The EOF analysis asks that the projection coefficients are determined in 
such a way that:
(1) z1 explains the maximum possible amount of the variance of the x’s;
(2) z2 explains the maximum possible amount of the remaining  variance

of the x’s;
(3) so forth for the remaining z’s.

With these requirements, it can be shown mathematically that the
projection coefficient functions (eij) are the eigenvectors of the covariance 
matrix of x’s.

The fraction of the total variance explained by a particular eigenvector is 
equal to the ratio of that eigenvalue to the sum of all eigenvalues.

the orthogonal requirement in time !
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Eigenvectors of a Symmetric MatrixEigenvectors of a Symmetric Matrix

Any symmetric matrix R can be decomposed in the following way 
through a diagonalization, or eigenanalysis:

Where E is the matrix with the eigenvectors ei as its columns, and L is 
the matrix with the eigenvalues λi, along its diagonal and zeros  
elsewhere.

The set of eigenvectors, ei, and associated eigenvalues, λi, represent a 
coordinate transformation into a coordinate space where the matrix R 
becomes diagonal.
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Covariance MatrixCovariance Matrix
The EOF analysis has to start from calculating the covariance matrix.

For our case, the state of the Pacific SST is described by values at 
model grid points Xi. 

Let’s assume the observational network in the Pacific has 10 grids in 
latitudinal direction and 20 grids in longitudinal direction, then there 
are 10x20=200 grid points to describe the state of pacific SST. So we 
have 200 state variables:

Xm(t), m =1, 2, 3, 4, …, 200

In our case, there are monthly observations of SSTs over these 200 
grid points from 1900 to 1998. So we have N (12*99=1188) 
observations at each Xm:

Xmn = Xm(tn), m=1, 2, 3, 4, …., 200
n=1, 2, 3, 4, ….., 1188
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Covariance Matrix Covariance Matrix –– cont.cont.
The covariance between two state variables Xi and Xj is:

The covariance matrix is as following:

Here N = 1188

X12 X1,M-1 X1MX11 X13 •••••
X22 X2,M-1 X2,MX21 X23 •••••
X32 X3,M-1 X3,MX31 X33 •••••

XM-1,2 XM-1,M-1 XM-1,MXM-1,1 XM-1,3 •••••
XM,2 XM,M-1 XM,MXM,1 XM,3 •••••

Here M= 200
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Eigenvectors of a Symmetric MatrixEigenvectors of a Symmetric Matrix

Any symmetric matrix R can be decomposed in the following way 
through a diagonalization, or eigenanalysis:

Where E is the matrix with the eigenvectors ei as its columns, and L is 
the matrix with the eigenvalues λi, along its diagonal and zeros  
elsewhere.

The set of eigenvectors, ei, and associated eigenvalues, λi, represent a 
coordinate transformation into a coordinate space where the matrix R 
becomes diagonal.
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Orthogonal ConstrainsOrthogonal Constrains
There are orthogonal constrains been build in in the EOF 
analysis:

(1) The principal components (PCs) are orthogonal in time.
There are no simultaneous temporal correlation between 
any two principal components.

(2) The EOFs are orthogonal in space.
There are no spatial correlation between any two EOFs.

The second orthogonal constrain is removed in the rotated 
EOF analysis.
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Mathematic BackgroundMathematic Background

I don’t want to go through the mathematical details of EOF 
analysis. Only some basic concepts are described in the 
following few slids.

Through mathematic derivations, we can show that the 
empirical orthogonal functions (EOFs) of a time series Z(x, 
y, t) are the eigenvectors of the covarinace matrix of the 
time series.

The eigenvalues of the covariance matrix tells you the 
fraction of variance explained by each individual EOF.
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Some Basic Matrix OperationsSome Basic Matrix Operations
A two-dimensional data matrix X:

The transpose of this matrix is XT:

The inner product of these two matrices:
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How to Get Principal Components?How to Get Principal Components?

If we want to get the principal component, we project a single 
eigenvector onto the data and get an amplitude of this eigenvector at 
each time, eTX:

For example, the amplitude of EOF-1 at the first measurement time is 
calculated as the following:
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Using SVD to Get EOF&PCUsing SVD to Get EOF&PC

We can use Singular Value Decomposition (SVD) to get  
EOFs, eigenvalues, and PC’s directly from the data matrix, 
without the need to calculate the covariance matrix from 
the data first.

If the data set is relatively small, this may be easier than 
computing the covariance matrices and doing the
eigenanalysis of them. 

If the sample size is large, it may be computationally more 
efficient to use the eigenvalue method.
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What is SVD?What is SVD?

Any m by n matrix A can be factored into 

The columns of U (m by m) are the EOFs

The columns of V (n by n) are the PCs. 

The diagonal values of Σ are the eigenvalues represent the amplitudes 
of the EOFs, but not the variance explained by the EOF.

The square of the eigenvalue from the SVD is equal to the eigenvalue 
from the eigen analysis of the covariance matrix.

original time series EOFs

normalized PCs
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An Example An Example –– with SVD methodwith SVD method

(from Hartmann 2003)
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An Example An Example –– With With EigenanalysisEigenanalysis

(from Hartmann 2003)
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Correlation MatrixCorrelation Matrix
Sometime, we use the correlation matrix, in stead of the covariance 
matrix, for EOF analysis.

For the same time series, the EOFs obtained from the covariance 
matrix will be different from the EOFs obtained from the correlation 
matrix.

The decision to choose the covariance matrix or the correlation matrix 
depends on how we wish the variance at each grid points (Xi) are 
weighted.

In the case of the covariance matrix formulation, the elements of the 
state vector with larger variances will be weighted more heavily. 

With the correlation matrix, all elements receive the same weight and 
only the structure and not the amplitude will influence the principal 
components.
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Correlation Matrix Correlation Matrix –– cont.cont.

The correlation matrix should be used for the following 
two cases:

(1)The state vector is a combination of things with different 
units. 

(2) The variance of the state vector varies from point to point 
so much that this distorts the patterns in the data.
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Presentations of EOF Presentations of EOF –– Variance MapVariance Map

There are several ways to present EOFs. The simplest way is to plot 
the values of EOF itself. This presentation can not tell you how much 
the real amplitude this EOF represents.

One way to represent EOF’s amplitude is to take the time series of 
principal components for an EOF, normalize this time series to unit 
variance, and then regress it against the original data set.

This map has the shape of the EOF, but the amplitude actually  
corresponds to the amplitude in the real data with which this structure 
is associated.

If we have other variables, we can regress them all on the PC of one 
EOF and show the structure of several variables with the correct
amplitude relationship, for example, SST and surface vector wind
fields can both be regressed on PCs of SST.
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Presentations of EOF Presentations of EOF –– Correlation MapCorrelation Map

Another way to present EOF is to correlate the principal 
component of an EOF with the original time series at each 
data point.

This way, present the EOF structure in a correlation map.

In this way, the correlation map tells you what are the co-
varying part of the variable (for example, SST) in the 
spatial domain. 

In this presentation, the EOF has no unit and is non-
dimensional.
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How Many How Many EOFs EOFs Should We Retain?Should We Retain?

There are no definite ways to decide this. Basically, we look at the 
eigenvalue spectrum and decide:

(1) The 95% significance errors in the estimation of the eigenvalues is:

If the eigenvalues of adjacent EOF’s are closer together than this 
standard error, then it is unlikely that their particular structures are 
significant.

(2) Or we can just look at  the slope of the eigenvalue spectrum.
We would look for a place in the eigenvalue spectrum where it levels 
off so that successive eigenvalues are indistinguishable. We would not 
consider any eigenvectors beyond this point as being special.

effective numbers of degree of freedom
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An ExampleAn Example

The first EOF is well
separated from the rest 
EOF modes

(from Hartmann 2003)
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Rotated EOFRotated EOF
The orthogonal constrain on EOFs sometime cause the spatial structures 
of EOFS to have significant amplitudes all over the spatial domain.

We can not get localized EOF structures.
Therefore, we want to relax the spatial orthogonal constrain 
on EOFs (but still keep the temporal orthogonal constrain).
We apply the Rotated EOF analysis.

To perform the rotated EOF analysis, we still have to do the regular 
EOF first.

We then only keep a few EOF modes for the rotation.
We “rotated” these selected few EOFs to form new EOFs (factors).
based on some criteria.
These criteria determine how “simple” the new factors are.
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Criteria for the RotationCriteria for the Rotation

Basically, the criteria of rotating EOFs is to measure the 
“simplicity” of the EOF structure. 

Basically, simplicity of structure is supposed to occur 
when most of the elements of the eigenvector are either of 
order one (absolute value) or zero, but not in between.

There are two popular rotation criteria:
(1) Quartimax Rotation
(2) Varimax Rotation
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Quartimax Quartimax and and Varimax Varimax RotationRotation
Ouartimax Rotation
It seeks to rotate the original EOF matrix into a new EOF matrix for 
which the variance of squared elements of the eigenvectors is a 
maximum.

Varimax Rotation (more popular than the Quartimax rotation)
It seeks to simplify the individual EOF factors.

The criterion of simplicity of the complete factor matrix is defined as 
the maximization of the sum of the simplicities of the individual 
factors.

bjp: the jth loading coefficient
of the pth EOF mode 
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Reference For the Following ExamplesReference For the Following Examples

The following few examples are from a recent paper 
published on Journal of Climate:

Dommenget, D. and M. Latif (2002): A Cautionary Note A Cautionary Note 
onon the Interpretation of EOFthe Interpretation of EOF. J. Climate, Vol. 15, No.2, 
pages 216-225. 
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Example 1:Example 1:
Atlantic SST Atlantic SST 
VariabilityVariability

Rotated
EOF

Linear
Regression

EOF

From Dommenget, D. and M. Latif (2002)
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Example 2: Indian Ocean SST VariabilityExample 2: Indian Ocean SST Variability

Rotated
EOF

Linear
Regression

EOF

From Dommenget, D. and M. Latif (2002)
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Example 3:Example 3:
SLP VariabilitySLP Variability

(Arctic Oscillation)(Arctic Oscillation)

Rotated
EOF

Linear
Regression

Covariance-Based
EOF

Correlation-Based
EOF

From Dommenget, D. and M. Latif (2002)
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Example 4:Example 4:
LowLow--Dimensional Dimensional 

Variability Variability 
(Variance Based)(Variance Based)

Rotated EOF

Linear Regression

Physical Modes

EOF

From Dommenget, D. and M. Latif (2002)
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Example 5:Example 5:
LowLow--Dimensional Dimensional 

Variability Variability 
(Correlation Based)(Correlation Based)

Rotated EOF

Linear Regression

Physical Modes

EOF

From Dommenget, D. and M. Latif (2002)
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Correlated Structures between Two VariablesCorrelated Structures between Two Variables

SVD analysis is also used to reveal the correlated spatial structures 
between two different variables or fields, such as the interaction 
structures between the atmosphere and oceans.

We begin by constructing the covariance matrix between data matrices 
X and Y of size MxN and LxN, where M and L are the structure 
dimensions and N is the shared sampling dimension.

Their covariance matrix is:

or in matrix form:
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An Example An Example –– SVD (SST, SLP)SVD (SST, SLP)

Sea Surface Temperature (SST)

Sea Level Pressure (SLP)



ESS210BESS210B
Prof. JinProf. Jin--Yi YuYi Yu

SVD Analysis of Covariance MatrixSVD Analysis of Covariance Matrix
We then apply the SVD analysis to the covariance matrix and obtain:

U: The columns of U (MxM) are the column space of CXY and 
represent the structures in the covariance field of X.

V: The columns of V are the row space of CXY and are those 
structures in the Y space that explain the covariance matrix.

Σ: The singular values are down the diagonal of the matrix Σ. 
The sum of the squares of the singular values is equal to 
the sum of the squared covariances between the original 
elements of X and Y.

MxL MxM MxL LxL
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What Do What Do UU and and VV mean?mean?
The column space (in U) will be structures in the 
dimension M that are orthogonal and have a partner in the 
row space of dimension L (in V). 

Together these pairs of vectors efficiently and orthogonally
represent the structure of the covariance matrix. 

The hypothesis is that these pairs of functions represent 
scientifically meaningful structures that explain the 
covariance between the two data sets.

The 1st EOF in U and the 1st EOF in V together explain the 
most of the covariance (correlation) between two variables 
X and Y.
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Principal ComponentsPrincipal Components
The principal components corresponding to the EOFs in U
and V can be obtained by projecting the EOFs (singular 
vectors) onto the original data: 

The covariance between each pair (kth) of the principal 
component should be equal to their corresponding singular 
value.
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Presentation of SVD VectorsPresentation of SVD Vectors
Similar to the EOS analysis, the singular vectors are normalized and 
non-dimensional, whereas the expansion coefficients have the 
dimensions of the original data.

To include amplitude information in the singular vectors, we can
regress (ore correlate) the principal components of U or V with the 
original data for this purpose.

(1) For example, normalize the principal component of U.

(2) Regress this normalized principal component with the original data 
set Y to produce a “heterogeneous regression map”. This map shows 
the amplitude of covariance between X and Y.

(3) Regress this normalized principal component with the original data 
set X to produce a “homogeneous map”. This map tells us the spatial 
structure of X that is most correlated with Y.
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Heterogeneous and Homogeneous MapsHeterogeneous and Homogeneous Maps
Heterogeneous regression maps: regress (or correlate) the expansion 
coefficient time series of the left field with the input data for the right 
field, or do the same with the expansion coefficient time series for the 
right field and the input data for the left field.

Homogeneous regression maps: regress (or correlate) the expansion 
coefficient time series of the left field with the input data for the left 
field, or do the same with the right field and its expansion coefficients.
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An Example An Example –– SVD (SST, SLP)SVD (SST, SLP)

Sea Surface Temperature (SST)

Sea Level Pressure (SLP)
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SVD MapsSVD Maps

Heterogeneous Correlation Homogeneous Correlation
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How to Use How to Use Matlab Matlab to do SVD?to do SVD?

See pages 27-28 of the paper “A manual for 
EOF and SVD analysis of climate data” by 
Bjornsson and Venegas.


