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Empirical Orthogonal Function Analysis

 Empirical Orthogonal Function (EOF) analysis attempts to
find a relatively small number of independent variables
(predictors; factors) which convey as much of the original
Information as possible without redundancy.

1 EOF analysis can be used to explore the structure of the
variability within a data set in a objective way, and to
analyze relationships within a set of variables.

L EOF analysis Is also called principal component analysis
or factor analysis.
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What Does EOF Analysis do?

d In brief, EOF analysis uses a set of orthogonal functions
(EOFs) to represent a time series in the following way:

N
Z(x, v, 1) = Z PC(t)- EOF(x,y)
k=1

a Z(x,y,1) is the original time series as a function of time (t)
and space (X, y).

EOF(X, y) show the spatial structures (X, y) of the major
factors that can account for the temporal variations of Z.

PC(t) is the principal component that tells you how the
amplitude of each EOF varies with time.
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What Do You Get from EOF?
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An Example

0 We apply EOF analysis to a
50-year long time series of
Pacific SST variation from a
model simulation.

U The leading EOF mode shows
a ENSO SST pattern. The EOF
analysis tells us that ENSO is the
dominant process that produce
SST variations in this 50-year
long model simulation.

U The principal component tells
us which year has a EI Nino or La
Nina, and how strong they are.
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Another VView of the Rotation

(from Hartmann 2003)
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Rotation of Coordinates

O Suppose the Pacific SSTs are described by values at grid points: x;, X,,
X3, -.-Xy- We know that the x;’s are probably correlated with each other.

O Now, we want to determine a new set of independent predictors z; to
describe the state of Pacific SST, which are linear combinations of x;:

X2+ éexy+..t ey X

O Mathematically, we are rotating the old set of variable (x) to a new set
of variable (z) using a projection matrix (e):
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Determine the Projection Coefficients

O The EOF analysis asks that the projection coefficients are determined in
such a way that:

(1) z, explains the maximum possible amount of the variance of the x’s;

(2) z, explains the maximum possible amount of the remaining variance
of the X’s;

(3) so forth for the remaining 2's. the orthogonal requirement in time !

O With these requirements, it can be shown mathematically that the
projection coefficient functions (g;;) are the eigenvectors of the covariance
matrix of x’s.

O The fraction of the total variance explained by a particular eigenvector is
equal to the ratio of that eigenvalue to the sum of all eigenvalues.
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Eigenvectors of a Symmetric Matrix

O Any symmetric matrix R can be decomposed in the following way
through a diagonalization, or eigenanalysis:

REI' =.;:LfEf
RE =LE

O Where E is the matrix with the eigenvectors g; as its columns, and L is

the matrix with the eigenvalues 4, along its diagonal and zeros
elsewnhere.

O The set of eigenvectors, e;, and associated eigenvalues, A, represent a
coordinate transformation into a coordinate space where the matrix R
becomes diagonal.
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Covariance Matrix

The EOF analysis has to start from calculating the covariance matrix.

For our case, the state of the Pacific SST is described by values at
model grid points X..

Let’s assume the observational network in the Pacific has 10 grids in
latitudinal direction and 20 grids in longitudinal direction, then there
are 10x20=200 grid points to describe the state of pacific SST. So we
have 200 state variables:

X (t),m=1,2 3,4, ...,200
In our case, there are monthly observations of SSTs over these 200

grid points from 1900 to 1998. So we have N (12*99=1188)
observations at each Xm:

X, =X (t), m=1,2 3,4, ..., 200
n=1,2, 3,4, ..., 1188
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Covariance Matrix — cont.

L The covariance between two state variables X; and X; is:

Here N = 1188

O The covariance matrix is as following:

Xlz Xl3 00000 Xl,M'l

X21 )(23 (TYY Y X2,M-1

X31 X32 YYYY) X3,M-1 ’ Here M= 200

Av1r Xvtz Xyers
v Xmz  Xus XMM-1
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Eigenvectors of a Symmetric Matrix

O Any symmetric matrix R can be decomposed in the following way
through a diagonalization, or eigenanalysis:

REI' =.;:LfEf
RE =LE

O Where E is the matrix with the eigenvectors g; as its columns, and L is

the matrix with the eigenvalues 4, along its diagonal and zeros
elsewnhere.

O The set of eigenvectors, e;, and associated eigenvalues, A, represent a
coordinate transformation into a coordinate space where the matrix R
becomes diagonal.
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Orthogonal Constrains

1 There are orthogonal constrains been build in in the EOF
analysis:

(1) The principal components (PCs) are orthogonal in time.

There are no simultaneous temporal correlation between
any two principal components.

(2) The EOFs are orthogonal in space.
There are no spatial correlation between any two EOFs.

[ The second orthogonal constrain is removed in the rotated
EOF analysis.
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Mathematic Background

4 I don’t want to go through the mathematical details of EOF
analysis. Only some basic concepts are described in the
following few slids.

O Through mathematic derivations, we can show that the
empirical orthogonal functions (EOFs) of a time series Z(X,
y, t) are the eigenvectors of the covarinace matrix of the
time series.

O The eigenvalues of the covariance matrix tells you the
fraction of variance explained by each individual EOF.
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Some Basic Matrix Operations

L A two-dimensional data matrix X:
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How to Get Principal Components?

O If we want to get the principal component, we project a single
eigenvector onto the data and get an amplitude of this eigenvector at

each time, eTX:

[El 1 €21 €31

XML XM2 XM3

O For example, the amplitude of EOF-1 at the first measurement time is
calculated as the following:

11 =€11X1] T € X2 e X3 .. FEex X011
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Using SVD to Get EOF&PC

1 We can use Singular Value Decomposition (SVD) to get
EOFs, eigenvalues, and PC’s directly from the data matrix,
without the need to calculate the covariance matrix from
the data first.

O If the data set is relatively small, this may be easier than
computing the covariance matrices and doing the
eigenanalysis of them.

4 If the sample size is large, it may be computationally more
efficient to use the eigenvalue method.
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What 1s S\VD?

O Any m by n matrix A can be factored into

A= UE\*’T normalized PCs

O The columns of U (m by m) are the EOFs
U The columns of V (n by n) are the PCs.

O The diagonal values of X are the eigenvalues represent the amplitudes
of the EOFs, but not the variance explained by the EOF.

O The square of the eigenvalue from the SVD is equal to the eigenvalue
from the eigen analysis of the covariance matrix.
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An Example — with S\VVD method
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An Example — With Eigenanalysis
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Correlation Matrix

d Sometime, we use the correlation matrix, in stead of the covariance
matrix, for EOF analysis.

[ For the same time series, the EOFs obtained from the covariance
matrix will be different from the EOFs obtained from the correlation

matrix.

The decision to choose the covariance matrix or the correlation matrix
depends on how we wish the variance at each grid points (X;) are
weighted.

In the case of the covariance matrix formulation, the elements of the
state vector with larger variances will be weighted more heavily.

With the correlation matrix, all elements receive the same weight and
only the structure and not the amplitude will influence the principal
components.
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Correlation Matrix — cont.

1 The correlation matrix should be used for the following
two cases:

(1) The state vector is a combination of things with different
units.

(2) The variance of the state vector varies from point to point
so much that this distorts the patterns in the data.

[ ESS210B
™ Prof. Jin-Yi Yu




Presentations of EOF — VVariance Map

L There are several ways to present EOFs. The simplest way is to plot
the values of EOF itself. This presentation can not tell you how much
the real amplitude this EOF represents.

One way to represent EOF’s amplitude is to take the time series of
principal components for an EOF, normalize this time series to unit
variance, and then regress it against the original data set.

This map has the shape of the EOF, but the amplitude actually
corresponds to the amplitude in the real data with which this structure
IS associated.

If we have other variables, we can regress them all on the PC of one
EOF and show the structure of several variables with the correct
amplitude relationship, for example, SST and surface vector wind
fields can both be regressed on PCs of SST.
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Presentations off EOF — Correlation Map

1 Another way to present EOF is to correlate the principal
component of an EOF with the original time series at each
data point.

O This way, present the EOF structure in a correlation map.

d In this way, the correlation map tells you what are the co-
varying part of the variable (for example, SST) in the
spatial domain.

O In this presentation, the EOF has no unit and is non-
dimensional.
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How Many EOFs Should We Retain?

O There are no definite ways to decide this. Basically, we look at the
eigenvalue spectrum and decide:

(1) The 95% significance errors in the estimation of the eigenvalues is:

AAd = 1’ / N* effective numbers of degree of freedom

If the eigenvalues of adjacent EOF’s are closer together than this
standard error, then it is unlikely that their particular structures are
significant.

(2) Or we can just look at the slope of the eigenvalue spectrum.

We would look for a place in the eigenvalue spectrum where it levels
off so that successive eigenvalues are indistinguishable. We would not
consider any eigenvectors beyond this point as being special.
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Eigenvalue Spectrum: NMorm= no

The first EOF is well
/ separated from the rest

EOF modes
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Rotated EOF

O The orthogonal constrain on EOFs sometime cause the spatial structures
of EOFS to have significant amplitudes all over the spatial domain.

=>» We can not get localized EOF structures.

=>» Therefore, we want to relax the spatial orthogonal constrain
on EOFs (but still keep the temporal orthogonal constrain).

=> We apply the Rotated EOF analysis.

U To perform the rotated EOF analysis, we still have to do the regular
EOF first.

=> We then only keep a few EOF modes for the rotation.

= We “rotated” these selected few EOFs to form new EOFs (factors).
based on some criteria.

=>» These criteria determine how “simple” the new factors are.
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Criteria for the Rotation

1 Basically, the criteria of rotating EOFs is to measure the
“simplicity” of the EOF structure.

[ Basically, simplicity of structure is supposed to occur
when most of the elements of the eigenvector are either of
order one (absolute value) or zero, but not in between.

1 There are two popular rotation criteria:
(1) Quartimax Rotation
(2) Varimax Rotation
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Quartimax and Varimax Rotation

[ OQuartimax Rotation

It seeks to rotate the original EOF matrix into a new EOF matrix for
which the variance of squared elements of the eigenvectors is a
maximum.

bjp: the jth loading coefficient
of the pth EOF mode

O Varimax Rotation (more popular than the Quartimax rotation)
It seeks to simplify the individual EOF factors.

The criterion of simplicity of the complete factor matrix is defined as

the maximization of the sum of the simplicities of the individual
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Reference For the Following Examples

 The following few examples are from a recent paper
published on Journal of Climate:

Dommenget, D. and M. Latif (2002): A Cautionary Note
on the Interpretation of EOF. J. Climate, Vol. 15, No.2,
pages 216-225.
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Example 1:
Atlantic SST
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Example 2: Indian Ocean SST Variability
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Example 3:
SLP Variability
(Arctic Osclillation)

Covariance-Based
EOF

Correlation-Based
EOF

Rotated
EOF

Linear
Regression

covarighce—matrix ECF—1  (17.83 %)

eovdrianca—matris EOF—2 {14 35 %)

sofrelation—maotrx EOF—2  £11.55 %)

From Dommenget, D.

and M. Latif




MODE—1 (43.8%) MODE—2 (35.3%) MODE—3 (20.9%)

Example 4:
|_ow-Dimensional
Variability
Variance Based) |
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Example 5:
|_ow-Dimensional
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Correlated Structures between Two Variables

O SVD analysis is also used to reveal the correlated spatial structures
between two different variables or fields, such as the interaction
structures between the atmosphere and oceans.

L We begin by constructing the covariance matrix between data matrices
X and Y of size MxN and LxN, where M and L are the structure
dimensions and N is the shared sampling dimension.

L Their covariance matrix is:
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SV D Analysis of Covariance Matrix

O We then apply the SVD analysis to the covariance matrix and obtain:

O U: The columns of U (MxM) are the column space of C,., and
represent the structures in the covariance field of X.

V: The columns of V are the row space of C,., and are those
structures in the Y space that explain the covariance matrix.

2: The singular values are down the diagonal of the matrix X.
The sum of the squares of the singular values is equal to
the sum of the squared covariances between the original
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What Do U and V. mean?

1 The column space (in U) will be structures in the
dimension M that are orthogonal and have a partner in the
row space of dimension L (in V).

] Together these pairs of vectors efficiently and orthogonally
represent the structure of the covariance matrix.

1 The hypothesis Is that these pairs of functions represent
scientifically meaningful structures that explain the
covariance between the two data sets.

 The 15t EOF In U and the 15t EOF In V together explain the
most of the covariance (correlation) between two variables
Xand.
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Principal Components

[ The principal components corresponding to the EOFs in U
and V can be obtained by projecting the EOFs (singular
vectors) onto the original data:

X' =uTx : Y =vly

1 The covariance between each pair (kth) of the principal
component should be equal to their corresponding singular
value.
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Presentation of SVVD Vectors

O Similar to the EOS analysis, the singular vectors are normalized and
non-dimensional, whereas the expansion coefficients have the
dimensions of the original data.

To include amplitude information in the singular vectors, we can
regress (ore correlate) the principal components of U or V with the
original data for this purpose.

(1) For example, normalize the principal component of U.

(2) Regress this normalized principal component with the original data
set Y to produce a “heterogeneous regression map”. This map shows
the amplitude of covariance between X and Y.

(3) Regress this normalized principal component with the original data
set X to produce a “homogeneous map”. This map tells us the spatial

structure of X that is most correlated with Y.
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Heterogeneous and Homogeneous Maps

L Heterogeneous regression maps: regress (or correlate) the expansion
coefficient time series of the left field with the input data for the right
field, or do the same with the expansion coefficient time series for the

right field and the input data for the left field.

O Homogeneous regression maps: regress (or correlate) the expansion
coefficient time series of the left field with the input data for the left
field, or do the same with the right field and its expansion coefficients.
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r=.m

Homogeneous Correlation

g1*(zs00)

Heterogeneous Correlation

S1(Z500)




How to Use Matlab to do S\VVD?

1See pages 27-28 of the paper “A manual for
EOF and SVD analysis of climate data” by
Bjornsson and Venegas.
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