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Linear filters in the Fourier domain

Filtering: Multiplying the transform by a transfer function.

gn−→
DFT

Gn −→ H(fn)Gn −→
inverse DFT

g̃n (1)

where H(fn) is the transfer function discretized over fn.

The most important drawback: You need to know the whole series,
collect all data, prior to filtering.
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Example
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1 |f | 6 fc
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A reason for the strange result of the “blue” filtering
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When filtering in the Fourier domain, we usually do not smooth out the filters.
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Linear filters

Filtering in Fourier domain is very easy: multiply the DFT of the input by the
transfer function.

Filtering in the signal domain can be tricky:

x(t)
r(t)

y(t)

x(t)
r(t)

y(t)

a FIR filter:

an IIR filter:
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The transfer function

Even though the filters are realized in the signal domain, it is convenient to ana-
lyse them in Fourier domain. Every possible linear filter is represented by

Y (f) = H(f)X(f) . (2)

H(f) is the transfer function.
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Terminology

• H(f) = 0 for |f | > f0 — a low-pass filter.

• H(f) = 0 for |f | 6 f0 — a high-pass filter.

• H(f) 6= 0 for f1 6 |f | 6 f2 — a band-pass filter.

• H(f) = 0 for f1 6 |f | 6 f2 — a band-stop filter; if f2 − f1 is small, also
known as a notch filter.
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A general linear filter in the signal domain has the form

yn =
q∑

k=−s
αkxn−k +

p∑
k=1

βkyn−k (3)

xn is a (discretized) input signal, yn is the output signal.

If s > 0, future values of the input are needed to construct the output. Such filter
is non-causal . It cannot be realized on-line (or in real time).
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Eq. (3):

yn =
q∑

k=−s
αkxn−k +

p∑
k=1

βkyn−k

• If p = 0, the filter is a Finite Impulse Response filter (FIR), or a moving
average filter. The output of such a filter dies out in a finite time after the
input has died out.

• If p > 0, the filter is Infinite Impulse Response filter (IIR), or an autoregres-
sive filter. Its output can go on infinitely long after the input has died out (in
fact, this is a parasitic behaviour).
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Causal FIR filters

yn =
q∑

k=0

αkxn−k . (4)

If the input is stationary, the output also is. q is called the order of the filter .
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To find the transfer function, we Fourier transform Eq. (4).

Ym =
1√
N

N−1∑
n=0

e2πimn/Nyn =
1√
N

N−1∑
n=0

e2πimn/N
q∑

k=0

αkxn−k

=
q∑

k=0

αk
1√
N

N−1∑
n=0

e2πimn/Nxn−k =
q∑

k=0

αk
1√
N

N−1−k∑
n′=−k

e2πim(n′+k)/Nxn′ .

(5)
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By the assumption of periodicity of the input, x−l ≡ xN−l. On the other hand,
exp(2πim(N−l)/N)= exp(2πim) exp(2πim(−l)/N)= exp(2πim(−l)/N).
Thus

Ym =
q∑

k=0

αke
2πimk/N 1√

N

N−1∑
n′=0

e2πimn′/Nxn′︸ ︷︷ ︸
Xm

=
q∑

k=0

αke
2πimk/N

︸ ︷︷ ︸
Hm

Xm . (6)

m/N = m/(N∆) ∆ = fm∆, where fm is them-th discrete Fourier frequency.
Therefore. . .
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Transfer function of a causal FIR filter
has the form

H(fm) =
q∑

k=0

αk
(
e2πifm∆

)k
= α

(
e2πifm∆

)
, (7)

where α(z) is the following polynomial of order q

α(z) =
q∑

k=0

αkz
k (8)

(coefficients of the filter become coefficients of the polynomial (8)).

Usually, for the sake of simplicity, we assume that ∆ = 1, or that the sam-
pling time is the time unit. Remember: With this notation, frequencies become
dimensionless and the Nyquist interval equals [−1/2,1/2].
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Transfer function of a general FIR filter

The above can be easily generalized to arbitrary (non-causal) FIR filters. The
transfer function becomes

H(fm) =
q∑

k=−s
αk
(
e2πifm∆

)k
= α

(
e2πifm∆

)
, (9)

where α(·) is now an appropriate rational function.
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Simple low- and high-pass filters

Consider a filter

yn =
1

4
xn−1 +

1

2
xn +

1

4
xn+1 . (10)

Its transfer function reads

Hc(f) =
1

4
e2πif +

1

2
+

1

4
e−2πif =

1

2
+

1

2
cos 2πf = cos2 πf . (11)

Similarly, the transfer function of the filter

yn = −
1

4
xn−1 +

1

2
xn −

1

4
xn+1 . (12)

reads

Hs(f) = −
1

4
e2πif +

1

2
−

1

4
e−2πif =

1

2
−

1

2
cos 2πf = sin2 πf . (13)
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(10) is a (poor) low-pass filter.
(12) is a (poor) high-pass filter.
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The “usual” moving average

The (unweighted) moving average

yn =
1

2l + 1

(
xn−l + xn−l+1 + · · ·+ xn + · · ·+ xn+l−1 + xn+l

)
, (14)

with the transfer function

HMA(f) =
1

2l + 1
(1 + 2 cos 2πf + 2 cos 4πf + · · ·+ 2 cos 2lπf) (15)

is a poor low-pass filter.
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Transfer functions of unweighted moving averages

0

0.25

0.5

0.75

1

-0.5 -0.25 0 0.25 0.5

|H
M

A
(f

)|

f

l=1
l=2
l=3
l=5

Copyright c© 2009-12 P. F. Góra 4–19



An example of the usual moving average
(the noise of the order of the signal)

Moving Averages
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Differentiating filters

First derivative:

dg

dx

∣∣∣∣
x

'
1

2

(
g(x)− g(x−∆)

∆
+
g(x+ ∆)− g(x)

∆

)
=

1

2∆
g(x+∆)−

1

2∆
g(x−∆) (16a)

yn =
1

2∆
xn+1 −

1

2∆
xn−1 (16b)

H(f) =
i

∆
sin(2πf∆) (16c)

Second derivative:

yn =
1

4∆2
xn+1 −

1

2∆2
xn +

1

4∆2
xn−1 (17a)

H(f) = −
1

∆2
sin(πf∆) (17b)
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Phase of the transfer function

In Fourier domain,

Y (f) = H(f)X(f) . (18)

H(f) = R(f)eiφ(f), R(f) > 0. The modulus of the transfer function ampli-
fies/reduces contributions from the corresponding frequencies. What does the
phase, φ(f), do?
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The filter (10) is non-causal, but it is easy to find its causal version: we need to
introduce a time delay :

yn =
1

4
xn−2 +

1

2
xn−1 +

1

4
xn (19)

with the transfer function

H(f) = e2πif cos2 πf . (20)

This transfer function differs from that of (10) only by a phase factor. The phase
factor in (20) is responsible for the time delay!
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Suppose that the phase of the transfer function depends linearly on frequencies,
φ(f) = af∆. Calculate the inverse transform:

yk(t) ∼
∑
n
H(fn)X(fn)e−2πifnk∆ =

∑
n
R(fn)eiafn∆X(fn)e−2πifnk∆

=
∑
n
R(fn)X(fn)e−2πifn(k−a)∆ , (21)

which corresponds to a time shift of a units (“channels”). Therefore, filters of
a linear phase introduce a uniform time shift Filters that do not have a linear
phase introduce phase differences between various Fourier components.

Copyright c© 2009-12 P. F. Góra 4–26



FIR filters design

If we have a FIR filter

yn =
q∑

k=0

αkxn−k , (22)

we know that its transfer function has the form

H(fm) =
q∑

k=0

αk
(
e2πifm∆

)k
. (23)

Note that (23) equals, up to a constant, to the DFT of the filter.
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An inverse problem

In practice, we need to deal with an inverse problem∗: Given an

“ideal” transfer functionH(f), find the order, q, and coefficients αk

of the filter (22) such that its transfer function is as close as possible

to the “ideal” one.

∗This is a technical term!
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An intuitive approach

• Take the ideal transfer function H(f).

• Calculate the inverse transform†

h(t) =

1/2∫
−1/2

H(f)e−2πift df . (24)

• Discretize h(t) in as many points, as the desired order of the filter is.

This approach usually does not work. Usually we Fourier transform and discre-
tize the ideal transform, at the price of distorting the transfer function.

†Remember that if ∆ = 1, fNyq = 1/2.
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Example: A low-pass filter

The ideal transfer function reads

H(f) =

1 |f | 6 f0 < 1/2 ,

0 |f | > f0 .
(25)

The transfer function in the time domain equals

h(t) =

1/2∫
−1/2

H(f)e−2πift df =

f0∫
−f0

e−2πift df =
sin 2πf0t

πt
. (26)

The amplitude of h(t) falls off very slowly, there is no natural cut-off. A sharp
edge contains all Fourier components. We either introduce an arbitrary cut-off, or
do something else, mostly multiplying the ideal transfer function by a windowing
function.
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Coefficients of a low-pass FIR filter, square window
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Coefficients of a low-pass FIR filter, Hannig window
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Low-pass FIR filters discretized on a different number of points
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Remarks

• Decent FIR filters require large orders.

• Windowing functions reduce the ripple (rapid oscillations near the edge of
the band), but extend the roll-off.

• Filter design is an art. Design involves decisions on

– the ripple,

– the roll-off,

– (non)linearity of the phase,

– requirements on memory and computational complexity.

Usually you can’t optimize for all of the above simultaneously /.

• There is vast literature on filter design.
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Linear IIR filters

. . . take the form

yn =
q∑

k=−s
αkxn−k +

p∑
k=1

βkyn−k , (27)

where p > 1, xn is a (discretized) input signal, yn is the output signal. For
convenience we discuss causal filters (s = 0) only; in fact, allowing for non-
causality does not change much.
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A problem

An IIR filter has a feedback loop. As a matter of principle, an IIR filter can
produce a non-zero output infinitely long after the input has ceased. Can we

avoid that?

How can we be sure that a stationary input signal produces a stationary output?
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Linear difference equations

A homogeneous linear difference equation:

zn = β1zn−1 + β2zn−2 + · · ·+ βpzn−p (28)

An inhomogeneous linear difference equation:

zn = β1zn−1 + β2zn−2 + · · ·+ βpzn−p + ϕ (29)

Theorem: The general solution to an inhomogeneous difference equation equ-
als a sum of the general solution to the corresponding homogeneous linear dif-
ference equation and any particular solution to the inhomogeneous equation.

Stability of IIR filters is determined by the homogeneous equations.
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Embedding in higher dimensions

Let zn = [zn, zn−1, . . . , zn−p+1]T ∈ Rp. Then the homogeneous equation (28)
can be written as

zn =


β1 β2 β3 · · · βp−1 βp
1 0 0 · · · 0 0
0 1 0 · · · 0 0
... ... ... · · · ... ...
0 0 0 · · · 1 0

 zn−1 . (30)

Solutions to (30) are stable if moduli of all eigenvalues are smaller that 1.
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The characteristic determinant:

Wp = det


β1 − λ β2 β3 · · · βp−1 βp

1 −λ 0 · · · 0 0
0 1 −λ · · · 0 0
... ... ... · · · ... ...
0 0 0 · · · 1 −λ


= −λWp−1 + (−1)p+1βp = λ2Wp−2 + (−1)p+1βp−1λ+ (−1)p+1βp = . . .

= (−1)p+1
(
−λp + β1λ

p−1 + β2λ
p−2 + · · ·+ βp

)
(31)
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Stability condition of an IIR filter

An IIR filter (27) is stable if and only if roots of the equation

λp − β1λ
p−1 − β2λ

p−2 − · · · − βp = 0 (32)

lie inside the unit circle.

Copyright c© 2009-12 P. F. Góra 4–40



A confusion in terminology

Sometimes the above condition is formulated for the reciprocals of λ’s:

An IIR filter (27) is stable if and only if roots of the equation

1− β1u− β2u
2 − · · · − βpup = 0 (33)

lie outside the unit circle.

The conditions (32), (33) are equivalent, but they should not be confused.
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Example

Consider a filter

yn = β1yn−1 + xn . (34)

Its characteristic polynomial in the form (33) reads

β(z) = 1− β1z . (35)

It can be seen that if |β1| > 1, yn “explodes”, and therefore we need to have
|β1| < 1, which means that the only root of (35), 1/β1, lies outside the unit
interval (and of course, outside the unit circle).
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IIR filter transfer function

Write (27) in the form

yn − β1yn−1 − · · · − βpyn−p = α0xn + α1xn−1 + · · ·+ αqxn−q , (36)

and Fourier transfer it. After some algebra,

H(fm) =

q∑
k=0

αk
(
e2πifm∆

)k
1−

p∑
j=1

βj
(
e2πifm∆

)j . (37)

Note: The form of the denominator in (37) suggests that the stability condition (33) is “natural”.
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IIR filters design

The trouble with IIR filters design is that one needs to avoid poles that lead to
instability. Usually, it is not easy to verify whether a pole lies inside or outside
the unit circle. The following bilinear transform is frequently used:

z =
1− iw
1 + iw

or w = i
z − 1

z + 1
. (38)

Calculate

|z|2 =
1− iw
1 + iw

·
1 + iw̄

1− iw̄
=

1 + iw̄ − iw + |w|2

1− iw̄ + iw + |w|2
=

1 + |w|2 + 2 Imw

1 + |w|2 − 2 Imw
. (39)

The filter is stable if |z|2 > 1, or Imw > 0: we allow only poles that lie in the
upper half-plane.
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IIR filter design procedure

• An “ideal” transfer function H(f) is given.

• Find a rational function that approximates H(f) sufficiently well. Let H(f)

be this function. It must be real and nonnegative.

• Find poles of H(f). Half of them lie in the upper half-plane, half in the lower
half-plane. Take a product of terms with poles from the upper half-plane
only, substitute f = i(z − 1)/(z + 1), simplify and identify the coefficients.
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Example: Butterworth filter of order N

As before, we are trying to design a low-pass filter. The step function is approxi-
mated by

H(f) =
1

1 +
(
f
f0

)2N , (40)

where f0 is the cut-off frequency. A filter based on (40) is called Butterworth filter
of order N . Its poles lie on a circle with a radius f0, symmetrically with respect
to the real axis.
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N = 1 is the simplest case.

H(f) =
1

1 + ( ff0
)2

=
i

f
f0

+ i︸ ︷︷ ︸
lower

·
−i
f
f0
− i︸ ︷︷ ︸

upper

. (41)

We thus take
−if0

f − if0
=

−if0

iz−1
z+1 − if0

=
−f0 − f0z

z − 1− f0z − f0
=

−f0 − f0z

−(1 + f0) + (1− f0)z

=

f0
1+f0

+ f0
1+f0

z

1− 1−f0
1+f0

z
(42)

α0 = α1 = f0/(1 + f0), β1 = (1 − f0)/(1 + f0) are the coefficients of the
filter.
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Left: Transfer function of Butterworth filter of order 1. Middle: Transfer function of Butterworth
filter of order 4. Right: Phase of Butterworth filter of order 4.
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Most popular filters

1. Butterworth filters

• See above (40).

• The first 2N − 1 derivatives of H(f) vanish at f = 0 — the filter is
maximally flat.

• Poles lie on a circle.

• Used in audio processing.
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2. Chebyshev filters

• A steeper rolloff, but ripples appear.

• There are two kinds of Chebyshev filters, with ripples in thepassband :

H(f) =
1

1 + [TN (f/fp)]2
, (43)

Ripple and with ripples in the stopband :

H(f) =
1

1 +
[
TN(fs/fp)
TN(fs/f)

]2 . (44)

TN in the above stands for a Chebyshev polynomial of order N , fp is
the upper bound of the passband, fs > fp is the lower bound of the
stopband.
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• Because of ripples, they are not used in audio processing, but it is most
excellent if the passband contains a single “interesting” frequency (for
example, if higher harmonics are to be eliminated).

3. Elliptic filters

H(f) =
1

1 + [RN (f/fp)]2
, (45)

where RN is a rational function, with roots of the numerator within
[−1/2,1/2], and roots of the denominator outside, with RN(1/z) =

1/RN(z). Poles of such a filter lie on an ellipsis.

4. Bessel filters, with a constant delay in the passband.
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All above filters can have analog realizations.

Design of analog and digital filters is very important in electronics, telecommuni-
cation etc.

Because rational approximation is much better than polynomial approximation,
IIR filters require significantly lower orders than FIR filters of similar performance.
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