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Linear filters in the Fourier domain

Filtering: Multiplying the transform by a transfer function.

QannﬁH(fn)Gn — _gn (1)

inverse DFT

where H( f) is the transfer function discretized over f;,.

The most important drawback: You need to know the whole series,
collect all data, prior to filtering.
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Example

L |f| < fe
08 - H =
(£) {O fl > fe
s 2exp (—(f/f)*
H(f) = ( / 1
- 1+ exp (—(f/fe)*)
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¢ The signal before andafter fiI’é‘éring Tz 1
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A reason for the strange result of the “blue” filtering

1orey

1 1 1 1 1 1
4 6 8 10 12 14 16 18

When filtering in the Fourier domain, we usually do not smooth out the filters.
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Linear filters

Filtering in Fourier domain is very easy: multiply the DFT of the input by the
transfer function.

Filtering in the signal domain can be tricky:

a FIR filter:
X(t), ) y(t),
an IR filter:
—X@> r(t) y(t)»
«
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The transfer function

Even though the filters are realized in the signal domain, it is convenient to ana-
lyse them in Fourier domain. Every possible /inear filter is represented by

Y(f) =HUHX(). (2)

H(f) is the transfer function.
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Terminology

e H(f) = 0for|f| > fo— alow-pass filter.
e H(f) = O0for|f| < fo— ahigh-pass filter.
e H(f) # Ofor f1 < |f| < fo — aband-pass filter.

e H(f) = Ofor f1 < |f| < fo» — a band-stop filter; if fo — f1 is small, also
known as a notch filter.
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A general linear filter in the signal domain has the form

Z ATy + Z BrYn—k (3)

k= =1

xn, 1S a (discretized) input signal, vy, is the output signal.

If s > 0O, future values of the input are needed to construct the output. Such filter
IS non-causal. It cannot be realized on-line (or in real time).
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Eq. (3):

q
Un = Y Zp_t+ > Br¥Yn_k
k=—s k=1

p
o If p = 0O, the filter is a Finite Impulse Response filter (FIR), or a moving

average filter. The output of such a filter dies out in a finite time after the
input has died out.

e If p > 0O, the filter is Infinite Impulse Response filter (lIR), or an autoregres-
sive filter. lts output can go on infinitely long after the input has died out (in
fact, this is a parasitic behaviour).
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Causal FIR filters

q
Yn = Z ALy | -
k=0

If the input is stationary, the output also is. q is called the order of the filter.
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To find the transfer function, we Fourier transform Eq. (4).

1Nz_:12'/N 1 "& orimn/N &
VN =0 VN =0 k=0
Syt N~ 2mimn/N S gt NS p2rimnl k) /N
Timn wimn
= o —— e Ty = ap——= » € T, .
k=0 vV N n=0 k=0 VN n'=—k

(9)
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By the assumption of periodicity of the input, x_; = x_;. On the other hand,
exp(2rim(N—1)/N)=exp(2wim) exp(2wim(—1)/N)=exp(2mim(—1) /N).
Thus

q 1 N-1 q
— 2mimk /N 2mimn' /N — 2mimk/N
Yim = > oge ™™ / e > e mimn’/ T = Y oage ™ N X . (6)
k=0 VN = k=0 )
)Erm Hm

m/N = m/(NA) A = fmA\, where fy, is the m-th discrete Fourier frequency.
Therefore. ..
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Transfer function of a causal FIR filter
has the form

() = Y. a (2mifnB) = o (2mifn ) (7)
k=0

where a(z) is the following polynomial of order ¢

q
a(z) = Y ap2” (8)

k=0
(coefficients of the filter become coefficients of the polynomial (8)).

Usually, for the sake of simplicity, we assume that A = 1, or that the sam-
pling time is the time unit. Remember: With this notation, frequencies become
dimensionless and the Nyquist interval equals [—1/2,1/2].
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Transfer function of a general FIR filter

The above can be easily generalized to arbitrary (non-causal) FIR filters. The
transfer function becomes

H(fm) = 3 g (270m8)* = o (c2rifnd), (9)
k=—s

where a(-) is now an appropriate rational function.
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Simple low- and high-pass filters

Consider a filter

Yn — 7 Ln— 1+ :E + xn—|—1'

1
4
Its transfer function reads

1

He(f) = %esz + % + %e_me _1 +  cos 2rf = cos’nf.

2
Similarly, the transfer function of the filter

1 1 1
Yn — _an—l + ~Ln — an—l—l .

reads

Hs(f) ——1 27TZf—l— 1 _2mf—%—%c0527rf=sin27rf.

4 4

(10)

(11)

(12)

(13)
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10) is a (poor) low-pass filter.
12) is a (poor) high-pass filter.
1 —— 1 — T
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E \ E /
go0st \ o5t /
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f f
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The “usual” moving average

The (unweighted) moving average

1
2l 41

with the transfer function

Hua(f) =

o+ 1 (14 2cos2nf+2cosdnf+---4+2cos2inf) (195)

is a poor low-pass filter.
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Transfer functions of unweighted moving averages

1
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An example of the usual moving average
(the noise of the order of the signal)

Moving Averages
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Differentiating filters

First derivative:

dg| 1 (g(z)—glxz—A)  g(lz+ A)—g(x) 1

@x—§< A + A ) —g( + A )——g(x—A) (16a)
1 1
Yn = SA Tn+1 — Exn 1 (16b)
H(f) = —sun(27rfA) (16¢)
Second derivative:

1 1 1

Yn =— 4A2 LIn+1 — SN2 n+ N Ln—1 (173.)
1

H(Sf) = N sin(rfA) (17b)
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Phase of the transfer function

In Fourier domain,

Y(f) =RHX). (18)

H(F) = R(f)e®(f), R(f) > 0. The modulus of the transfer function ampli-
fies/reduces contributions from the corresponding frequencies. What does the

phase, ¢(f), do?

Copyright (© 2009-12 P. F. Géra 4-24



The filter (10) is non-causal, but it is easy to find its causal version: we need to
introduce a time delay:

1
Yn — 4n2+_n1+_n (19)

with the transfer function

H(f) = e*™ cos? nf . (20)

This transfer function differs from that of (10) only by a phase factor. The phase
factor in (20) is responsible for the time delay!

Copyright (©) 2009-12 P. F. Géra 4-25



Suppose that the phase of the transfer function depends linearly on frequencies,
o(f) = afA. Calculate the inverse transform:

ur(t) ~ D H(F) X (fr)e 2MImhE =3 T R(fa)e' 2 X (fr)e=2mInt A

=" R(fn) X (fn)e 2mifnlk=a)x (21)

which corresponds to a time shift of a units (“channels”). Therefore, filters of
a linear phase introduce a uniform time shift Filters that do not have a linear
phase introduce phase differences between various Fourier components.
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FIR filters design

If we have a FIR filter

q
Yn — Z AT —f (22)
k=0

we know that its transfer function has the form

M) = 3 o (2mifmAYE (23)
k=0

Note that (23) equals, up to a constant, to the DFT of the filter.
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An inverse problem

In practice, we need to deal with an inverse problen": Given an
“ideal” transfer function H(f), find the order, ¢, and coefficients oy
of the filter (22)) such that its transfer function is as close as possible

to the “ideal” one.

*This is a technical term!
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An intuitive approach

e Take the ideal transfer function H(f).

e Calculate the inverse transforml]
1/2

h(t) = / H(F)e—2mift gf (24)

—1/2

e Discretize h(t) in as many points, as the desired order of the filter is.

This approach usually does not work. Usually we Fourier transform and discre-
tize the ideal transform, at the price of distorting the transfer function.

"Remember that if A = 1, fyyq = 1/2.
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Example: A low-pass filter

The ideal transfer function reads

1 |fl< fo<1/2,
H(f) = (25)
{0 [f1> fo-
The transfer function in the time domain equals
1/2 fo .
. . 2
h(t) — / H(f)e—Qﬂ'th df — / 6—27T’Lft df — SN :‘fOt . (26)
T
—1/2 —fo

The amplitude of h(t) falls off very slowly, there is no natural cut-off. A sharp
edge contains all Fourier components. We either introduce an arbitrary cut-off, or
do something else, mostly multiplying the ideal transfer function by a windowing
function.
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Coefficients of a low-pass FIR filter, square window
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Coefficients of a low-pass FIR filter, Hannig window
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Low-pass FIR filters discretized on a different number of points
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Remarks

e Decent FIR filters require large orders.

e Windowing functions reduce the ripple (rapid oscillations near the edge of
the band), but extend the roll-off.
e Filter design is an art. Design involves decisions on
— the ripple,
— the roll-off,
— (non)linearity of the phase,
— requirements on memory and computational complexity.
Usually you can’t optimize for all of the above simultaneously @.

e There is vast literature on filter design.
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Linear IIR filters

.. take the form

Z ATy T Z BrYn—k » (27)

k= =1

where p > 1, x, is a (discretized) input signal, vy, is the output signal. For
convenience we discuss causal filters (s = 0) only; in fact, allowing for non-
causality does not change much.
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A problem

An /IR filter has a feedback loop. As a matter of principle, an IIR filter can
produce a non-zero output infinitely long after the input has ceased. Can we
avoid that?

How can we be sure that a stationary input signal produces a stationary output?
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Linear difference equations

A homogeneous linear difference equation:

zn = B12p—1 + Bozpn—2 + -+ Bpzn—p (28)

An inhomogeneous linear difference equation:

2n = B12pn—1 + Bozpn—o+ -+ 5pzn—p + ¢ (29)

Theorem: The general solution to an inhomogeneous difference equation equ-
als a sum of the general solution to the corresponding homogeneous linear dif-
ference equation and any particular solution to the inhomogeneous equation.

Stability of IR filters is determined by the homogeneous equations.
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Embedding in higher dimensions

Let zn = [2n, 2n—1,-- -, 2n_p+1]T € RP. Then the homogeneous equation (28
can be written as

B1 B2 B3 - Bpo1 Bp
1 0 0 --- 0 o)
zn=1,0 1 0O --. o) O | z,_1 (30)
0 0 0 - 1 O
Solutions to (30) are stable if moduli of all eigenvalues are smaller that 1.
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The characteristic determinant:

(B1—X Bo B3 - Bpo1 Bp
1 X O ... @) 0
W, = det 0 1 -x -~ 0 O

0 o 0 --. I

= —AWp_1 + (—1D)PT18, = N°W, o + (-1)P T8, 1A+ (-1)PTig, = ...
= ()P (AP + 8P 4 NP2 4 ) (31)
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Stability condition of an IIR filter

An /IR filter (27) is stable if and only if roots of the equation
M — BN — BoAP T2 — . = 3, =0 (32)

lie inside the unit circle.
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A confusion in terminology

Sometimes the above condition is formulated for the reciprocals of \’s:

An /IR filter (27) is stable if and only if roots of the equation

1 — Bru— Bou® — - — BpuP = 0 (33)

lie outside the unit circle.

The conditions (32), (33) are equivalent, but they should not be confused.

Copyright (©) 2009-12 P. F. Géra 4—41



Example

Consider a filter

Yn = B1Yn—1 + Tn . (34)

lts characteristic polynomial in the form (33) reads

B(z) =1-p1z. (35)

It can be seen that if |61]| > 1, yn “explodes”, and therefore we need to have
|31] < 1, which means that the only root of (35), 1/31, lies outside the unit
interval (and of course, outside the unit circle).
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lIR filter transfer function

Write (27) in the form

Yn — B1Yn—1 — -+ — BpYn—p = @oTn + @¥1Tp_1 + - + gTn—qg, (36)

and Fourier transfer it. After some algebra,

S (eszmA)k
H(fm) = —=25 — (37)
b (e2mifm&)

Note: The form of the denominator in suggests that the stability condition is “natural”.
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lIR filters design

The trouble with IR filters design is that one needs to avoid poles that lead to
instability. Usually, it is not easy to verify whether a pole lies inside or outside

the unit circle. The following bilinear transform is frequently used:
1 — 2w z—1

, or w=1=1 : (38)
1+ 2w z+1

z =

Calculate

1—dw 144w _ 1+iw—dw+|w® _ 14 [w]*+2Imuw
14w 1—iw 1—iw+iw+|w?2 14+ |w?2-2Imw
The filter is stable if |z|° > 1, or Imw > 0: we allow only poles that lie in the
upper half-plane.

22 =

(39)
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lIR filter design procedure

e An “ideal” transfer function H( f) is given.

e Find a rational function that approximates H(f) sufficiently well. Let H(f)
be this function. It must be real and nonnegative.

e Find poles of H(f). Half of them lie in the upper half-plane, half in the lower
half-plane. Take a product of terms with poles from the upper half-plane
only, substitute f = i(z — 1)/(z + 1), simplify and identify the coefficients.

Copyright (© 2009-12 P. F. Géra 4-45



Example: Butterworth filter of order N

As before, we are trying to design a low-pass filter. The step function is approxi-
mated by

H() = (40)

1+ (£)
where fq is the cut-off frequency. A filter based on (40) is called Butterworth filter
of order N. Its poles lie on a circle with a radius fg, symmetrically with respect

to the real axis.
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N = 1 is the simplest case.

1 7 —1
H(f) = = - - (41)
1_|_(in)2 fio-l-z fio—z
IoWer uﬁﬁer
We thus take
—ifo _  —itfo _  —Jo—Jfor _ —Jo — Joz
f—ifo iEg—ifo 2—1-fozr—fo —(1+fo)+ (1~ fo)z
/ J
— 1‘|—Of0 + 1+OfOZ (42)
1—
S

ag = a1 = fo/(1+ fo), B1 = (1 — fo)/(1 + fo) are the coefficients of the
filter.
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Left: Transfer function of Butterworth filter of order 1. Middle: Transfer function of Butterworth
filter of order 4. Right: Phase of Butterworth filter of order 4.
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Most popular filters

1. Butterworth filters

e See above (40).

e The first 2N — 1 derivatives of H(f) vanish at f = 0 — the filter is
maximally flat.

e Poles lie on a circle.

e Used in audio processing.
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2. Chebyshev filters
e A steeper rolloff, but ripples appear.

e There are two kinds of Chebyshev filters, with ripples in thepassband
1

H(f) = : (43)
1+ [Tn (f/fp))?
Ripple and with ripples in the stopband
1
H(f): T (Fol 1) 5 - (44)
N\Js
L+ [TNUS/J%I

T in the above stands for a Chebyshev polynomial of order N, f, is
the upper bound of the passband, fs > f, is the lower bound of the
stopband.

Copyright (©) 2009-12 P. F. Géra 4-50



e Because of ripples, they are not used in audio processing, but it is most
excellent if the passband contains a single “interesting” frequency (for
example, if higher harmonics are to be eliminated).

3. Elliptic filters
1

1+ [Ry (F/ )17
where Ry is a rational function, with roots of the numerator within
[—1/2,1/2], and roots of the denominator outside, with Ry (1/z) =
1/Rn(z). Poles of such a filter lie on an ellipsis.

(45)

H(f) =

4. Bessel filters, with a constant delay in the passband.
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All above filters can have analog realizations.

Design of analog and digital filters is very important in electronics, telecommuni-
cation etc.

Because rational approximation is much better than polynomial approximation,
lIR filters require significantly lower orders than FIR filters of similar performance.
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