
Abstract Drought is considered to be an extreme cli-

matic event causing significant damage both in the nat-

ural environment and in human lives. Due to the

important role of drought forecasting in water resources

planning and management and the stochastic behavior

of drought, a multiplicative seasonal autoregressive

integrated moving average (SARIMA) model is applied

to the monthly streamflow forecasting of the

Zayandehrud River in western Isfahan province, Iran.

After forecasting 12 leading month streamflow, four

drought thresholds including streamflow mean, monthly

streamflow mean, 2-, 5-, 10- and 20-year return period

monthly drought and standardized streamflow index

were chosen. Both observed and forecasted streamflow

showed a drought period with different severity in the

lead-time. This study also demonstrates the usefulness of

SARIMA models in forecasting, water resources

planning and management.
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1 Introduction

1.1 Background

Drought is considered as the most complex natural

phenomenon and, at the same time, the least under-

stood among natural hazards with different temporal

and spatial characteristics. Drought generally involves

long and sustained periods with insufficient precipita-

tion, soil moisture or water resources for supplying the

socio-economic activities in a region. Wilhite and

Glantz (1985) and Wilhite et al. (1986) have shown that

the lack of a precise definition of drought has been an

obstacle in understanding drought. This has led to

indecision and inaction on the part of managers and

policy makers. Perhaps the first efforts to predict

drought was carried out by Yevjevich (1967) by the

means of probability distribution. The use of run theory

in drought forecasting was introduced by Sen (1976,

1977). Stochastic nature of drought has also been

studied by many investigators. The renewal processes

was applied by Loaiciga and Leipnik (1996) to model

the occurrence of drought events. Lohani and Loga-

nathan (1997) used Palmer drought severity index

(PDSI) in a non-homogenous Markov chain model to

characterize the stochastic behavior of drought. Chung

and Salas (2000) used low-order discrete autoregressive

moving average models for estimating the occurrence

probabilities of drought events. Kim and Valdes (2003)

used PDSI as drought parameter to forecast drought in

the Conchos River basin in Mexico using conjunction of

dyadic wavelet transforms and neural network. Re-

cently, Mishra and Desai (2005) applied seasonal

autoregressive integrated moving average model to

forecast standardized precipitation index (SPI).

1.2 Stochastic hydrologic modeling

During the past five decades, several studies have

developed methods of analyzing stochastic character-

istics of hydrologic time series (i.e., Delleur et al. 1976;
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Salas and Obeysekera 1982; Hipel 1993; Hanson et al.

2004; Yurekli et al. 2005).

Perhaps the most widely used model is the ARIMA

model (Box and Jenkins 1976). The two general forms of

ARIMA models are non-seasonal ARIMA (p, d, q) and

multiplicative seasonal ARIMA(p, d, q) · (P, D, Q) in

which p and q are non-seasonal autoregressive and

moving average, P and Q are seasonal autoregressive

and moving average parameters, respectively. The other

two parameters, d and D, are required differencing used

to make the series stationary.

The differencing operator that is usually used in the

case of non-stationary time series is � = 1 – B (B is

backward shift operator) and �d = (1–B)d for seasonal

differencing. This form of non-seasonal ARIMA(p, d, q)

is written as

/ðBÞZt ¼ /ðBÞð1� BÞdZt ¼ hðBÞat ð1Þ

where Zt is the observed series, /(B) is the polynomial

of order p and h(B) is the polynomial of order q.

For seasonal time series that contain cyclic features,

seasonal differencing is often applied. In this case we

have a multiplicative model given by

/pðBÞUPðBSÞrdrD
s Zt � Z
� �

¼ hqðBÞHQðBsÞat ð2Þ

where FP and QQ are seasonal polynomials of order

P and Q, respectively. This is the general form of

the multiplicative seasonal ARIMA model of order

(p, d, q) · (P, D, Q).

1.3 Case study

The Zayandehrud River basin is located in the cen-

tral part of Iran at the eastern hillslope of Zagros

Mountains and western region of Isfahan province.

Plasjan basin with the area of about 1,600 km2 is the

main unregulated watershed of Zayandehrud basin

and is directly connected to Zayandehrud reservoir,

which has an important role in water supplying for

Isfahan city. The rainfall regime is typically Medi-

terranean with about 1,400 mm annual rainfall.

Generally, rainfall is rare from June to August when

the temperature can reach to 38�C. In the last years

of 20th century (1998–2001), drought occurred in Iran

which resulted in a high socio-economic damage. The

water storage of Zayandehrud dam decreased to the

lowest level during 25 years. The main objective of

the present study is to develop a valid stochastic

model to forecast streamflow drought in the major

river flow of Zayandehrud River which mainly pro-

vides the water storage of Zayandehrud dam. The

physical area considered in this study is shown in

Fig. 1.

2 Methodology

2.1 Time series modeling

The Box and Jenkins (1976) modeling approach in-

volves the following three steps:

2.1.1 Model identification

In this step, the model that seems to represent the

behavior of the series is searched, by the means of

autocorrelation function (ACF) and partial autocor-

relation function (PACF), for further investigation and

parameter estimation. The behavior of ACF and

PACF, is to see whether the series is stationary or not,

Fig. 1 Location of Plasjan
basin in Zayandehrud
watershed
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seasonal or non-seasonal. Differencing is done to make

non-stationary time series to stationary time series.

2.1.2 Parameter estimation

After identifying models, we need to obtain efficient

estimates of the parameters. These parameters should

satisfy two conditions namely stationary and invert-

ibility for autoregressive and moving average models,

respectively (Box and Jenkins 1976; Salas et al. 1980;

Bowerman and O’Connel 1993).

The parameters should also be tested whether they

are statistically significant or not. Associated with

parameters value are standard errors of estimate and

related t-values.

If h is the point estimate of the population para-

meter, h, and Sh denotes the standard error of h, the

t-value is calculated by

t ¼ h
Sh

ð3Þ

If the hypothesis H0
: h = 0 is rejected in favor of H0

: h „ 0

by setting the probability of type I error equal to

a = 0.05 or a = 0.05, the parameter is significant and is

kept in the model.

2.1.3 Goodness-of-fit test

Goodness-of-fit tests verify the validity of the model by

some tools. The residuals of the model are usually

considered to be time-independent and normally dis-

tributed over time. The most common tests applied to

test time-independence and normality are the Port

Manteau lack of test, the non-parametric Kolmogorov–

Smirnov test.

The Portmanteau lack of test (Salas et al. 1980)

compute a statistic, Q*, which is approximately dis-

tributed as v2(l-p-q) and is given by

Q� ¼ n0ðn0 þ 2Þ
Xk

e¼1

n0 � lð Þ�1
r2

eðâÞ ð4Þ

where n¢ = n – d, Q* has k – np degrees of freedom

where k is the lag number, n is the number of obser-

vation and d is required differencing. If the probability

of Q is less than a = 0.01, there is strong evidence that

the model is inadequate and if this probability is

greater than a = 0.05, it is reasonable to conclude that

the model is adequate.

The residuals of the model must also be normal. The

well-known non-parametric test is Kolmogorov–

Smirnov test (Hollander and Wolfe 1999) given by

D ¼MaxjFðxÞ � F0ðxÞj ð5Þ

where D is Kolmogorov–Smirnov’s statistic, F(x) the

cumulative distribution functions (cdfs) of observa-

tions, F0(x) the cdf of assumed distribution which is

normal distribution herein and N the number of data.

If the value of statistic is smaller than the critical value,

the null hypothesis H0:F(x) = F0(x) is accepted in favor

of H0:F(x) „ F0(x) and this means that residuals of the

model are normally distributed in time and also ade-

quate for modeling. Another graphical test for nor-

mality is cumulative periodogram (Hipel and Mcleod

1994).

Another important characteristic of residual is

homoscedasticity which means no change in variance

of the residual. The following test described by

Breusch and Pagan (1979) is very useful to determine

heteroscedasticity of residuals. For the test, the resid-

uals from the model fit to the data are divided into two

groups with the sample sizes of ns and np. Then,

residual sum of squares of the first (ESSF) and second

(ESSS) groups are obtained. Breusch–Pagan test sta-

tistic (Fcal) is obtained from the following equation

(Yurekli et al. 2005).

Fcal ¼
ESSs=ðnS � kpÞ
ESSf=ðnF � kpÞ

� Ftable½ðnS � kpÞ; ðnF � kpÞ�

ð6Þ

where kp is the degree of freedom. If Fcal is smaller

than F-table critical value, the residuals are assumed to

be homoscedastic.

2.1.4 Parameter uncertainty analysis

This section describes uncertainty assessment used in

this study in analyzing uncertainties of model para-

meter, hs. The uncertainty is assessed with the com-

parison of means of the parameters of synthetic

monthly streamflow series with the parameters of the

fitted model. In this study, the comparison consists of

three steps. Firstly, 100 random samples, each of size

n = 1,200 monthly streamflow, were simulated. In the

second step, the model estimated through Sects. 2.1.1–

2.1.3, is fitted to the synthetic series and their param-

eters are estimated. In the third step, a bootstrap

simulation is used to estimate the uncertainty (bias and

variance) associated with the sample estimate. In the

standard version of bootstrap (Efron and Tibshirani

1993), a random sample of size n is drawn with

replacement from the ordered sample {X1:n,

X2:n,...,Xn:n} as
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X�j ¼ F�1
E ðpÞ ¼ XðnpÞþ1 for j ¼ 1; n ð7Þ

where F –1
E(p) denotes the empirical (sample) quantile

function, p is a uniform rv(0–1) and (np) denotes the

integer floor function. Using a kth bootstrap sample,

denoted by

X�ðKÞ ¼ X�1 ;X
�
2 ; . . . ;X�n

� �
¼ 1; 2; . . . ; b ð8Þ

a new bootstrap estimate hk
* of hs can be obtained.

Here, b denotes the number of bootstrap simulations.

The set of estimates, h* = {h*
1, h*

2,...,h*
b} constitutes the

sampling distribution of hs. The bootstrap estimate of

the true bias (E[hs]–h) is given as

Bias ¼ h�m � hs

� �
ð9Þ

Where h*
m is the average of all bootstrap estimates h*.

The variance of hs is estimated as

Variance ¼ ðstandard errorÞ2 ¼ 1

b� 1

Xb

k¼1

h�k � h�m
� �2

ð10Þ

2.1.5 Model calibration

In order to evaluate the accuracy of the streamflow

forecasts obtained by applying the fitted model, the

following tests are used in this study.

– computing correlation coefficients between observed

and forecasted series

– computing the corresponding coefficient of efficiency

(Brath and Rosso 1993),

E ¼ 1�
P

Qt � Q̂t

� �2

P
Qt � �Q
� �2

ð11Þ

where Q̂t is the discharge at time t forecasted with a

given lead-time, Qt is the corresponding observed

streamflow and �Q is the mean of the whole series of

the observed streamflow.

– The root mean squared errors (RMSEs) for fore-

casted streamflow,

RMSE ¼
Pn

i¼1 ðFi �OiÞ
n

� �1=2

ð12Þ

where Fi and Oi are forecasted and observed stream-

flow.

– Non-parametric test for the difference of observed

and forecasted streamflow means by the use of

Wilcoxon rank sum method (Conover 1980; Khan

et al. 2006). It is the best robust non-parametric

methods for constructing a hypothesis test P-value

for difference of two population means (l1–l2) At

any significant level less than P-value, the null

hypothesis, equality of the population and model

parameter, is rejected.

– Non-parametric test for the equality of observed

and forecasted streamflow variances by the use of

Levene’s test (Levene 1960).

– Kolmogorov–Smirnov non-parametric goodness-of-

fit test to compare cdf of observed and forecasted

series (Sect. 2.1.3).

2.2 Drought definitions and thresholds

Drought is generally considered as periods with insig-

nificant precipitation, soil moisture and water re-

sources for sustaining and supplying the socio-

economic activities of a region. Thus, it is difficult to

give a universal definition of drought (Loukas and

Vasiliades 2004). The most well-known classification of

droughts is the classification proposed by Dracup et al.

(1980). The American Meteorological Society (2004)

adopted this drought classification system. These clas-

sifications which are based on the nature of the water

deficit are defined: (a) the meteorological drought, (b)

the hydrological drought, (c) the agricultural drought,

(d) the socio-economic drought. It is necessary, for the

analysis of any kind of above droughts, to select an

appropriate indicators for defining droughts. Almost

all drought indices are based on the basic method of

truncation used to derive drought events from contin-

ues or discrete records of streamflow, precipitation,

temperature, ground water drawdown and lake eleva-

tion (Chang and Kleopa 1991). A drought is defined as

an uninterrupted sequence of streamflow below an

arbitrary level (Yevjevich 1967). The streamflow de-

noted by xi where i indicates the time and the arbitrary

level, called the truncation level and denoted by x0, is

assumed to be constant. Examples of applied trunca-

tion level are the mean (Bonacci 1993), the median

(Griffiths 1990), mean and 75% of the mean (Clausen

and Pearson 1995) and lower percentage exceedances,

e.g., 90 or 95% flows found from flow duration curves

(Zelenhasic and Salvai 1987; Chang and Stenson 1990).

Thus the mean value of streamflow time series is se-

lected as the first truncation level. In the present study,

as the monthly streamflow time series is applied for

drought forecasting, the monthly mean values are also

applied as the truncation level for each month. Besides
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the two above truncation levels, we apply two other

drought indices called standardized streamflow index

(SSFI) and a probabilistic index which is based on

hydrologic drought return periods.

Standardized streamflow index is statistically similar

to the other most commonly used SPI introduced by

McKee et al. (1993) for meteorological drought anal-

ysis. The SSFI for a given period is defined as the

difference of streamflow from mean divided to stan-

dard deviation (McKee et al. 1993) as follows

SSFI ¼ Fi � F

r
ð13Þ

in which, Fi is flow rate in time interval i, �Fis the mean

of the series and r is the standard deviation of the

series. For monthly series, the SSFI is written as fol-

lows:

SSFIs ¼
Fms � Fs

rs
ð14Þ

in which

Fs ¼
1

n

XN

m¼1

Fm;s; s ¼ 1; . . . ;- ð15Þ

rs ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1

n� 1

Xn

m¼1

Fm;s � Fs
� �

s

ð16Þ

where m denotes the year and s denotes the interval

within year, Fs and rs are mean and standard devia-

tion of month s and x = 12.

The forth drought threshold used in this study is

the probability (or equivalent return period) with

which a certain drought will be equaled or not exceeded

in the base period of record. Rainfall, streamflow, flood

and low flow frequency analysis is a major task for

hydrologic designers and planners. In this study,

many distributions are fitted to monthly streamflow of

Zayandehrud River to estimate hydrologic drought in

different return periods (Tr = 1/1-non-exceedance

probability).

3 Results and discussions

3.1 Stochastic modeling

A stochastic linear ARIMA model is fitted to Plasjan

River, the main branch of Zayandehrud River.

Monthly streamflow time series of this river is used in

the period of January, 1970 to December, 1999

(i = 1,...,360; Fig. 2). Table 1 shows basic statistical

features of the streamflow of Plasjan River.

In the first step of model identification, the ACF and

PACF of the actual data indicate the need of differ-

encing. However, Fig. 3 shows the Q–Q plot of the

main series does not show normality. Thus, the loga-

rithmic transformation was applied. The transformed

Q–Q plot shows that the new series is normal (Fig. 3).

Two other non-parametric Kolmogorov–Smirnov and

chi-square tests of normality were also done for the

logarithmic series. The null hypothesis of normality

is accepted at 5% level as the K–S and chi-square

statistics of the logarithmic series, D = 0.093 and

v2 = 67.15, are smaller than critical values, D = 0.12

and v2 = 70.12, respectively.

The ACF and PACF of the seasonal and non-sea-

sonal differenced logarithmic series (D = 1 and d = 1)

are shown in Figs. 4 and 5. Two models were initially

selected, ARIMA(1, 1, 1) · (0, 1, 1) and ARIMA

(1, 1, 1) · (1, 1, 1).

Fig. 2 Time series of monthly streamflow of Plasjan River
(1970–1999)

Table 1 Summary of monthly and annual statistical properties
of Zayandehrud streamflow (1970–1999)

Months Mean
(m3/s)

Standard
deviation
(m3/s)

Coefficient
of variation
(%)

Skewness Kurtosis

January 5.12 1.60 31.16 –0.21 –1.01
February 5.20 1.56 29.99 –0.04 –1.16
March 7.67 3.49 45.47 0.91 –0.02
April 13.56 8.85 65.27 2.09 6.74
May 7.66 7.07 92.32 1.59 2.95
June 1.51 1.69 112.05 2.23 5.62
July 0.67 0.72 107.29 2.21 5.29
August 0.62 0.68 109.66 1.59 2.29
September 0.85 0.90 105.89 1.46 1.76
October 2.59 1.35 52.23 0.46 –0.01
November 4.29 1.98 46.18 0.50 –0.28
December 5.39 2.02 37.57 0.34 –0.07
Annual 4.59 1.87 40.76 0.60 0.49
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The ARIMA(1, 1, 1) · (0, 1, 1) model is rejected

because the non-seasonal moving average parameter

is not significant. The same condition is true for

the seasonal autoregressive parameter of ARIMA(1,

1, 1) · (1, 1, 1) model. As non-seasonal moving

average and seasonal autoregressive are not signifi-

cant in previous models, we leave out these models

and try ARIMA(1, 1, 0) · (0, 1, 1) as the third

model which can pass this step. The statistical

analysis of model parameters is presented in Table 2.

The bias and standard error of the 1,000 boot-

strap simulations show the validity of the model

parameters. The average values of the parameters

estimated from bootstrap are 0.872 and 0.761 for

autoregressive and moving average parameters,

respectively, which are very close to the exact values

(0.87 and 0.76). In a sense, parameter estimates of

the fitted model, ARIMA(1, 1, 0) · (0, 1, 1), are

almost unbiased.

The results of Porte Manteau lack-of-fit test indicate

that the residuals of the third model are time-inde-

pendent. Figures 6 and 7, residual ACF and PACF of

the models, do not show significant autocorrelation

coefficient. The Kolmogorov–Smirnov and heterosce-

dasticity Breusch–Pagan test statistic are 0.118 and

0.93, respectively, which satisfy normality and homo-

geneity of the residuals. The cumulative periodogram

(Fig. 8) also indicates that the residuals are time-

independent. Thus, the third model is accepted for

streamflow forecasting. The selected ARIMA(1, 1, 0) ·
(0, 1, 1) model is written

0:76ðBÞr1r12
12Zt ¼ �0:87ðB12Þat ð17Þ

3.2 Model calibration

For testing the validity of the above model for fore-

casting, the model is used for forecasting 9-, 3- and 1-

year monthly streamflow. We call these forecasting

periods scenario 1, 2 and 3, respectively. Thus, in

the first scenario, the model is used to forecast

9 · 12 = 108 monthly streamflow for the period of

January 1990 to December 1999. In the second sce-

nario, the model is used for forecasting monthly

streamflow in the period of January 1997 to December

1999. In the third scenario, the model is used for

forecasting monthly streamflow for the period of Jan-

uary 1999 to December 1999. The methods described

in Sect. 2.1.5 are then used to calibrate the model for

forecasting. The results of these methods are presented

in Table 3. As this table shows, the difference between

observed and forecasted streamflow is significant for

the first scenario. Although the correlation coefficient

is significant at 95% level but it does not show a sat-

isfactory forecasting in comparison with two other
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scenarios. The coefficient of efficiency is also very low

which shows an unsatisfactory streamflow forecasting

for 9 years. The RMSE of the forecasting streamflow

for the first scenario is relatively higher than the second

scenario and the RMSE of the second scenario is also

relative higher than the third scenario. This indicates

that the model is relatively suitable for streamflow

forecasting for 12 months ahead.

The other statistics which compare the statistic

properties of observed and forecasted streamflow also

show the significant difference between the mean,

variance and distribution of the observed and the

forecasted streamflow in the first scenario. The sane

conditions can be seen for the second scenario in

which 3-year monthly streamflow has been forecasted.

However, in the third scenario in which 1-year

monthly streamflow has been forecasted, the statistics

show that there is not significant difference between

observed and forecasted streamflow. The correlation

coefficient and the coefficient of efficiency are signif-

icantly high and indicate a very satisfactory forecast-

ing. The P-values of Wilcoxon and Levene’s tests are

higher than 0.05. This demonstrates that there is not

significant difference between observed and fore-

casted streamflow mean and variance. The Kol-

mogorov–Smirnov statistics also demonstrate that

there is no significant difference between observed

and forecasted distribution function. Thus, we can

conclude that the model is valid for forecasting 1-year

ahead monthly streamflow which is the aim of this

study for drought forecasting.

3.3 Drought forecasting

The selected ARIMA model (Eq. 17) was then used to

forecast streamflow from January, 2000 to December,

2000. The forecasted and observed flow rates are

compared first with two truncation levels, which are

time series mean and monthly mean (Fig. 9). It is

obvious that the period of January to December is a

drought period. The ability of the selected model to

forecast drought is also clear from the figure. Both

observed and forecasted series are below the trunca-

tion levels.

The SSFI is calculated for both forecasted and ob-

served time series using Eq. 14. Table 4 shows the

classification of SSFI. The comparison between ob-

served and forecasted SSFI is shown in Fig. 10. The

Table 2 Result of parameter estimation and bootstrap analysis for the third model, ARIMA(1, 1, 0)(0, 1, 1)

Parameters Values Standard error (SE) t-Ratio P < 0.01 Bootstrap

Variance Mean

SE Bias SE Bias

/1 0.87 0.04 21.03 0.0001 0.00032 –0.000032 0.0042 0.000058
Q1 0.76 0.05 22.4 0.0001 0.00093 –0.000074 0.0081 0.000058
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Fig. 8 Cumulative periodogram and 95% confidence limits for
monthly streamflow of Zayandehrud River
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SSFI can show the important feature of drought,

‘‘Severity.’’ Similar to SPI drought severity classifica-

tion (McKee et al 1993; Mishra and Desei 2005), the

severity of observed drought is also shown in Table 5.

This table and Fig. 9 show a period of severe drought

for January, February and December, moderate

drought for March, April, October and November. The

condition of May, June, July and August is near normal

because these months are usually dry seasons in the

study area. It is also clear that the ARIMA stochastic

model is able to forecast drought in leading time,

Tn+1,...,Tn+1, both in duration and severity. However, it

should be noted that the accuracy in modeling is very

important in obtaining a better result.

Hydrologic drought frequency analysis was applied

as an alternative truncation level for drought fore-

casting. Different frequency distributions were fitted to

monthly streamflow and the flow rate for hydrologic

drought in different 2-, 5-, 10- and 20-year return

periods were estimated using maximum likelihood

method of quantile estimation. The results of quantiles

(streamflow in different return periods) estimation are

presented in Table 6 and the best frequency distribu-

tion was selected on the basis on minimum RMSE.

Here, Eq. 12 is written as

RMSE ¼
Pn

i¼1 ðFi �OiÞ
n� p

� �1=2

ð18Þ

where ‘‘p’’ is the number of distribution parameters. In

this table, for example, if February streamflow is be-

tween 5 and 4.4 m3/s, a 2-year return period drought

has occurred. If the observed streamflow is less than

3.7 m3/s, a drought event with return period more than

20-year return period has been occurred. Figures 11,

12, 13 and 14 show compare observed and forecasted

values to the corresponding hydrologic drought for 2, 5,

10 and 20 year in different months.

For 2-year return period, both observed and fore-

casted streamflow are below the 2-year drought which

Table 3 Test results for the
comparison between
forecasted and observed
series at 95% confidence level

Forecasting
scenario

Correlation
coefficient

Coefficient of
efficiency

RMSE Wilcoxon’s
P-value

Levene’s
P-value

K–S
test

Scenario 1 0.577 0.165 15.82 0.007 0.009 0.004
Scenario 2 0.795 0.605 2.12 0.031 0.019 0.021
Scenario 3 0.925 0.971 0.42 0.202 0.148 0.536

Fig. 9 Comparison of observed, forecasted and two drought
truncation levels

Fig. 10 Comparison of observed and forecasted standardized
streamflow index

Table 4 Drought Classification based on SPI-value

Classification SPI

Extremely wet SPI>2
Very wet 1.5 < SPI < 1.99
Moderately wet 1.0 < SPI < 1.49
Near normal –0.99 < SPI < 0.99
Moderately dry –1.49 < SPI < –1.0
Severely dry –1.99 < SPI < –1.5
Extremely dry SPI < –2.0

Table 5 Observed and forecasted SSFI and their classification

Lead-time Forecasted
SSFI

Observed
SSFI

Classification

January –1.96 –1.95 Severely dry
February –1.99 –1.83 Severely dry
March –1.34 –1.28 Moderately dry
April –1.01 –1.08 Moderately dry
May –0.86 –0.83 Near normal
June –0.72 –0.70 Near normal
July –0.79 –0.87 Near normal
August –0.80 –0.87 Near normal
September –0.84 –0.82 Near normal
October –1.34 –1.28 Moderately dry
November –1.41 –1.48 Moderately dry
December –1.67 –1.68 Severely dry
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indicates that the region will experience a 2-year

hydrologic drought for all months in 2000 year. The

same condition can be seen for 5-year hydrologic

drought (Fig. 12) which shows a more severely dry

condition than that of 2-year drought.

In the case of 10- and 20-year hydrologic drought,

Figs. 13 and 14 shows a slightly different condition.

While both observed and forecasted streamflow shows

a drought period from January to April comparing

with 10- and 20-year hydrologic drought, forecasted

drought for May does not match with observed

drought condition. There may be additional water in

streamflow channel by snow melting. In general, it

could be concluded that the forecasted monthly

streamflow shows a period of water deficit and the

managers of water resources should carefully decide

on water resources planning and management in the

leading time.

4 Conclusions

This study impels the capability of multiplicative AR-

IMA model in streamflow forecasting. The largest

Table 6 Flow rate in
different hydrologic drought
return periods (Tr)

Month Fitted distribution Tr = 2 (m3/s) Tr = 5 (m3/s) Tr = 10 (m3/s) Tr = 20 (m3/s)

January Two-parameter gamma 5 3.8 2.5 2
February Two-parameter gamma 5 4.4 4 3.7
March Two-parameter gamma 7.2 6 4.5 3.4
April Two-parameter gamma 12 10.6 5 4
May Two-parameter gamma 5 3.8 0.5 0.2
June Two-parameter gamma 1 0.7 0.2 0.1
July Generalized Pareto 0.47 0.23 0.1 0.05
August Two-parameter gamma 0.3 0.2 0.1 0.05
September Two-parameter gamma 0.5 0.2 0.1 0.05
October Two-parameter gamma 2.3 2 0.6 0.5
November Two-parameter gamma 4 3.3 2 1.7
December Two-parameter gamma 5.2 4.2 3 2.7

Fig. 11 Comparison between observed and forecasted stream-
flow with 2-year hydrologic drought

Fig. 12 Comparison between observed and forecasted stream-
flow with 5-year hydrologic drought

Fig. 13 Comparison between observed and forecasted stream-
flow with 10-year hydrologic drought

Fig. 14 Comparison between observed and forecasted stream-
flow with 20-year hydrologic drought
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different (forecasting error) is observed in April and

May and the smallest difference is observed in dry

months between June and August. The higher differ-

ence in May and April is due to additional water flow

by snowmelt. The capability of ARIMA model could

also be seen from the analogy between monthly vari-

ation of forecasted and observed values where the

highest streamflow happens in winter month and

the lowest streamflow occurs in dry summer month.

The comparison of observed and forecasted drought

also proves the aptitude of ARIMA models for fore-

casting. However, it seems that the accuracy of drought

forecasting depends on the selected threshold. Here, it

depends on water resource mangers and planners to

choose a drought threshold according to the goal of

drought study. This study showed that simple threshold

like long-term mean is not suitable for drought analy-

sis. A more intricate monthly mean is a better choice.

However, a hydrologist or a planner would benefit

from applying normalized streamflow drought index

because the former index can also show the severity of

drought that the planner is going to deal with. In other

words, selecting tome series or monthly mean can show

water deficit while SSFI can give you an idea about

drought severity, the very important characteristics of

drought. On the other hand, when the manager or

hydrologist contracts with the question of drought risk

of a give project, it would be advisable to choose an

alternative drought hydrologic frequency threshold to

have an estimate of risk involved in the hydrologic

project.

Finally, the careful fitting of a linear stochastic

models to hydrologic time series such as streamflow

and rainfall, with an accurate drought definition and

threshold, will result in better drought preparedness

plan in a region so as to ensure sustainable water re-

source planning within the basin.
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