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The predictability of eight southern European tropical-like cyclones – seven Med-
icanes and the first-ever documented case of such a storm in the Bay of Biscay
– is studied evaluating European Centre for Medium-Range Weather Forecasts
(ECMWF) operational ensemble forecasts against operational analysis data. Fore-
cast cyclone trajectories are compared with the cyclone trajectory in the analysis by
means of a dynamic time warping technique, which allows one to find a match in
terms of their overall spatio-temporal similarity. Each storm is treated as an object
and its forecasts are analysed using parameters that describe intensity, symmetry,
compactness and upper-level thermal structure. This object-based approach allows
one to focus on specific storm features, while tolerating their shifts in time and space
to some extent.
The high compactness and symmetry of the storms are generally poorly predicted,
especially at long lead times. However, forecast accuracy tends to improve strongly
at short lead times, indicating that the ECMWF ensemble forecast model can ade-
quately reproduce Medicanes, albeit only a few days in advance. In particular, late
forecasts which have been initialised when the cyclone has already developed are
distinctly more accurate than earlier forecasts in predicting its kinematic and thermal
structure, confirming previous findings of high sensitivity of Medicane simulations
to initial conditions.
Findings reveal a markedly non-gradual evolution of ensemble forecasts with lead
time, which is often far from a progressive convergence towards the analysis value.
Specifically, a rapid increase in the probability of cyclone occurrence (a “forecast
jump”) is seen in most cases, generally with lead times between 5 and 7 days. Jumps
are also found for the forecast distribution of storm thermal structure. This behaviour
is consistent with the existence of predictability barriers. On the other hand, storm
position forecasts often exhibit a consistent spatial distribution of storm position
uncertainty and bias between consecutive forecasts.
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1 INTRODUCTION

The Mediterranean region has long been known as a hotspot
for cyclogenesis (Petterssen, 1956) due to its geography

(Buzzi and Tibaldi, 1978). Despite its relatively high latitude,
a small but significant fraction of Mediterranean cyclones
display some similarity to tropical cyclones, both in their
appearance in satellite images and in their kinematic and ther-
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mal structures. Such Mediterranean tropical-like cyclones,
also known as Medicanes (i.e., Mediterranean hurricanes),
have been documented since the beginning of the satellite
era (Ernst and Matson, 1983; Mayengon, 1984; Rasmussen
and Zick, 1987). Medicanes constitute a major threat due
to intense winds, torrential rainfall and associated flooding.
These storms are usually shorter-lived than North Atlantic
hurricanes but may exhibit several tropical-like traits in the
mature phase of their life cycle, such as high axial symme-
try, a warm core, a strong tendency to weaken after making
landfall and a cloud-free, weak-wind region at their centre
resembling the eye of a hurricane (Emanuel, 2005; Cavicchia
et al., 2014a).

Medicanes are distinguished among Mediterranean
cyclones by the complex pathway leading to their forma-
tion and maintenance. While hurricanes develop in regions
of near-zero baroclinicity and draw their energy from very
warm tropical oceans, Medicanes arise from pressure lows
that are born under moderate to strong baroclinicity. The
interaction between the warm sea and cold air associated
with a deep upper-level trough provides the necessary ther-
modynamic disequilibrium for these storms to develop a
warm core (Emanuel, 2005; Cavicchia et al., 2014a). It can
thus be maintained that Medicanes are the result of a syn-
ergy between synoptic-scale processes, which provide the
necessary environment for their development, and mesoscale
processes such as deep convection and latent heat fluxes from
the sea, which are crucial for their maintenance (Homar et al.,
2003; Emanuel, 2005; Tous et al., 2013). For this reason and
because of their small size (Miglietta et al., 2013; Picornell
et al., 2014), scarce data availability and the complex orogra-
phy of the Mediterranean region, predicting Medicanes poses
a considerable challenge for numerical weather forecasting.

Despite increased research interest in the last two decades,
Medicanes are by their nature elusive, due to their low fre-
quency of occurrence (less than two per year, according to
Cavicchia et al., 2014a) and the fact that they normally occur
over the sea, where observations are sparse. For this rea-
son, many studies to date have focused on modelling aspects
(Homar et al., 2003; Fita et al., 2007; Davolio et al., 2009;
Miglietta et al. 2011; 2013, Chaboureau et al., 2012a; Cioni
et al. 2016; 2018, Mazza et al., 2017; Pytharoulis et al., 2017)
and fewer on observational aspects (Pytharoulis et al., 2000;
Reale and Atlas, 2001; Moscatello et al., 2008; Chaboureau
et al., 2012b; Miglietta et al., 2013). Further studies exam-
ined Medicanes in relation to climate change (Romero and
Emanuel, 2013; Cavicchia et al., 2014b; Walsh et al., 2014;
Romero and Emanuel, 2017), a critical consideration given
the vulnerability of the Mediterranean region to future cli-
mate change (Giorgi and Lionello, 2008). Research efforts
so far have focused on deterministic simulations of Med-
icanes using high-resolution, convection-permitting models
(Fita et al., 2007; Davolio et al., 2009; Cioni et al. 2016;
2018; Mazza et al., 2017; Pytharoulis et al., 2017), as they are
deemed to best reproduce the small-scale processes that play

a crucial role in storm maintenance during the tropical-like
phase. Few studies analysed Medicanes using ensemble fore-
casts (Cavicchia and von Storch, 2012; Chaboureau et al.,
2012a; Pantillon et al., 2013; Mazza et al., 2017), of
which only Pantillon et al. (2013) used operational ensemble
forecasts.

Ensemble forecasts have been shown to be a valuable
tool for predicting extreme weather events several days in
advance (e.g., Buizza and Hollingsworth, 2002; Palmer,
2002; Lalaurette, 2003; Buizza, 2008; Magnusson et al.,
2015) and for analysing tropical cyclones (Torn and Cook,
2013; Rios-Berrios et al., 2016) and their predictability (Mun-
sell et al., 2013; Zhang and Tao, 2013). Among opera-
tional ensemble forecast systems, the European Centre for
Medium-Range Weather Forecasts (ECMWF) model has
shown high predictive skill for extreme weather events
(Lalaurette, 2003) including tropical cyclones (Yamaguchi
and Majumdar, 2010; Hamill et al., 2011) and it has been suc-
cessfully used to study their predictability (Magnusson et al.,
2014; González-Alemán et al., 2018). Specifically, Pantillon
et al. (2013) used ECMWF operational ensemble forecasts to
study the predictability of a Medicane in 2006 and found that
they were able to more consistently capture early signals of its
occurrence with respect to ECMWF deterministic forecasts.

The present study fills a gap in the existing literature, in
that it systematically investigates the predictability of eight
recent (2011–2017) southern European tropical-like cyclones
– seven Medicanes and the first-ever documented case of such
a storm in the Bay of Biscay – by evaluating ECMWF oper-
ational ensemble forecasts against operational analysis from
a fixed-event perspective (Pappenberger et al., 2011). Our
goal is to assess whether and how far in advance these fore-
casts can adequately reproduce Medicanes. We also analyse
the temporal evolution of the predictability of these storms by
identifying rapid changes of the ensemble statistics with lead
time that stand out compared with the expected gradual con-
vergence towards the analysis value (Buizza, 2008). We name
such changes “forecast jumps,” in line with the terminology
adopted in the previous literature (see, e.g., Zsoter et al., 2009)
but with the fundamental difference that our analysis focuses
on a well-defined event – the occurrence of a tropical-like
storm – rather than on the full forecast field. We finally inves-
tigate whether there is any consistent bias in the ensemble
forecasts, as may be expected given the model’s relatively
low horizontal resolution and parameterised convection. This
is not a straightforward task, as Medicanes are by their very
nature extreme events and as such are found near the tail of
the forecast distribution, as observed by Majumdar and Torn
(2014).

In this study, we evaluate ensemble forecasts against analy-
sis data using an object-based approach. Object-based meth-
ods have gained popularity in recent decades for their veri-
fication of precipitation forecasts (Ebert and McBride, 2000;
Wernli et al., 2008) and have more recently been applied to
the analysis of other atmospheric features, such as the jet
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stream (Limbach et al., 2012) and Rossby waves (Wiegand
and Knippertz, 2014). These methods allow the avoidance
of the “double penalty problem” (Ebert and McBride, 2000;
Wernli et al., 2008) that arises in the case of the mere dis-
placement of an otherwise well-predicted atmospheric feature
if an Eulerian error metric is used. An object-based method
can, in contrast, identify that the ensemble spread is due to a
displacement of the feature and that only this aspect exhibits
reduced predictability. We employ here a dynamic time warp-
ing (DTW) method (Berndt and Clifford, 1994) to better
match the cyclones in the forecast with those in the analy-
sis, allowing (small) temporal shifts of the forecast features
in addition to spatial displacements. This method was applied
for the first time in meteorology only recently (Maier-Gerber
et al., 2019) and is beneficial for studying low-probability
weather events, especially at longer lead times.

This article is structured as follows. In section 2, the data
and methods used are described; in particular, a dynamic
time warping technique that allows one to consider tem-
poral shifts in the forecasts is illustrated in detail. A brief
overview of the eight storms analysed is given in section 3,
highlighting their salient features. Results are presented in
section 4, with a focus on the evolution of ensemble fore-
casts with lead time; this section is organised into subsec-
tions, addressing in sequence forecasts of storm occurrence,
position, thermal and kinematic structure, and intensity. The
results are finally discussed in section 5, alongside concluding
remarks.

2 DATA AND METHODS

In this section, we provide an illustration of the methods and
techniques used to analyse the ECMWF operational analysis
and ensemble forecast data in order to apply the object-based
approach introduced in section 1. Mean sea level pressure
(MSLP) lows are first identified and tracked in both the analy-
sis and the ensemble data. Forecast cyclones are then matched
to the reference cyclone in the analysis, using a DTW tech-
nique to maximize the similarity of the trajectories. Forecasts

are evaluated over a time window as opposed to a fixed fore-
cast time; the choice of the time window depends on the
cyclone’s intensity as well as its dynamical and thermal struc-
ture as measured by suitable parameters. A short description
is finally provided of the graphics used for evaluating the
ensemble forecast statistics.

2.1 Data
ECMWF operational analysis data are used as reference data
to verify ensemble forecasts, which are initialised twice daily
(at 0000 and 1200 UTC) and consist of 50 perturbed forecasts
or members and a control forecast. The time resolution is 6 hr
for both the analysis and the ensemble data.

Both the high-resolution deterministic model (HRES),
which is used to generate analysis data, and the ensemble
prediction system (ENS) have undergone some changes dur-
ing the time period considered in this study (2011–2017).
Between 2011 and early 2016, horizontal grid spacing is
16 km for HRES and 32 km for ENS; afterwards, grid
spacing decreases to 9 km for HRES and 18 km for ENS.
Five and three events, respectively, occurred during each
of these two time periods (see also Table 1). Vertical
resolution also changed for both HRES and ENS during
the analysed time period. The reader is referred to the
ECMWF website for detailed information on changes and
updates to the model (https://www.ecmwf.int/en/forecasts/
documentation-and-support/changes-ecmwf-model).

2.2 Cyclone detection and tracking
Many available cyclone detection methods (Neu et al., 2013)
are not suitable for Medicanes, which have a much smaller
radius compared to most types of cyclones (see, e.g., Migli-
etta et al., 2011; Picornell et al., 2014). This issue is especially
apparent when the input data has a relatively low horizon-
tal resolution (Walsh et al., 2014), which is the case for the
ECMWF ensemble forecast data. For this reason, we have
developed a new detection method to identify pressure lows
in both the analysis and the forecast data. This method has

TABLE 1 Period and region of occurrence, duration, CP (hPa), symmetry, compactness (hPa/100 km), 10 m wind (m/s) and upper-level thermal wind
−VU

T for the eight storms, as inferred from operational analysis data. Values are the lowest (for CP) or the highest (for other quantities) reached in the life
cycle of the cyclone. 10 m wind is computed in a 300 km radius around the centre of the storm

Storm Period Region Duration CP Symmetry Compactness 10 m wind −VU
T

Rolf November 2011 WM 96 hr 997 0.95 6.6 22 26
Ruven November 2013 WM, TS, AS 48 hr 990 0.85 3.8 22 −31
Ilona January 2014 WM, TS, AS 60 hr 991 0.83 3.2 23 8
Qendresa November 2014 SM 60 hr 986 0.92 10.8 27 −14
Xandra November/December 2014 WM, TS 84 hr 989 0.95 3.6 19 22
Stephanie September 2016 BB 54 hr 998 0.96 6.0 22 11
Trixie October 2016 SM, EM 96 hr 1,005 0.96 4.9 24 18
Numa November 2017 TS, SM, IS 120 hr 1,002 0.98 5.1 19 20

Notes: WM = Western Mediterranean; SM = Southern Mediterranean; EM = Eastern Mediterranean; TS = Tyrrhenian Sea; AS = Adriatic Sea; IS = Ionian Sea; BB
= Bay of Biscay.

https://www.ecmwf.int/en/forecasts/documentation-and-support/changes-ecmwf-model
https://www.ecmwf.int/en/forecasts/documentation-and-support/changes-ecmwf-model
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been proved to be effective in detecting very small cyclones,
while still being capable of detecting larger cyclones as well
as filtering out spurious ones produced by noise or orographic
effects.

The cyclone detection method used in this study is based
on MSLP contours, spaced at 1 hPa intervals, and low-level
vorticity, defined as relative vorticity averaged over the 1,000,
925 and 850 hPa levels. Given our focus on the mature phase
of cyclones, only closed contours are considered, thereby
neglecting open systems (e.g., diminutive waves; see Hewson,
2009). Pressure lows are identified as objects falling into at
least one of two categories: (a) a set of four or more concen-
tric contours; and (b) a set of two or more concentric contours
with a radial MSLP gradient of 5 hPa/400 km or larger, cal-
culated within a 400 km distance from the centre of the
innermost contour, over at least four consecutive 30◦-spaced
azimuthal directions. The second category is needed to also
include earlier stages of a cyclone, in which its closed circu-
lation is still developing but a small pressure low is already
present at the boundary of a larger region of low pressure,
with a large MSLP gradient in its vicinity.

Detected lows are discarded when at least one of the three
following conditions is met: (a) the area of all MSLP con-
tours exceeds 500,000 km2 (the low is too large); (b) the
area of the second innermost contour is 50 times or more
larger than the area of the innermost contour and the MSLP
gradient is smaller than 5 hPa/400 km in all directions (the
low is considered noise); and (c) contours are too thin and
irregularly shaped (the low is considered noise – this typi-
cally occurs in the vicinity of high orography). The centre of
each pressure low is finally placed where low-level vorticity
reaches a local maximum within a distance of 100 km from
the MSLP minimum. The values of thresholds and parame-
ters have been chosen conservatively so as to minimise the
number of discarded lows. The outcome of cyclone detection
shows little sensitivity to small variations of these thresholds
and parameters.

Having been detected, pressure lows are tracked in time
using a method adapted from Hewson and Titley (2010),
which uses 1,000–500 hPa geopotential height difference
(thickness) and 500 hPa wind speed. While a short descrip-
tion is given here, the reader is referred to the aforementioned
article for a detailed explanation. In this tracking scheme, a
likelihood score (expressed in km) is computed for each pos-
sible pairing of a pressure low at the previous output time
and one at the current output time (hereafter referred to as
the “past low” and the “present low,” respectively). The score
estimates the likelihood of the pairing being correct, that is,
how likely it is that the present low is a result of the past low
advancing to a new position.

In the present study, the likelihood score is built on
two parameters: half-time separation and thickness change.
Half-time separation is the distance between the past and the
present low, after they have moved forward and backward in
time, respectively, for 60% of the time interval, considering

500 hPa wind as the steering flow. Thickness change is the
1,000–500 hPa difference in thickness between the positions
of the past and the present low. A third parameter, which
was originally used in the likelihood score formula, namely
the feature-type transition (Hewson and Titley, 2010), is kept
fixed at 60% ( Hewson, 2009, table 2) when calculating the
likelihood score, as the only type of feature considered in the
present study is the closed low.

The smaller the likelihood score, the more likely it is that
the pairing is correct – a low score results from a small
half-time separation and a small thickness change. Pairings
are discarded if the past and the present low are more than
600 km apart or if their likelihood score is higher than 700 km.
After computing the likelihood score for all possible pairings,
they are ranked from the lowest (most likely) to the highest
(least likely). Finally the ranking is read from top to bottom
and each pairing is either accepted, if neither low was already
previously paired, or rejected. When a pairing is accepted, the
present low becomes the last element of the track that contains
the past low. At the end, the remaining present lows form new
tracks.

2.3 Evaluation parameters
In order to evaluate ensemble forecasts, four parameters are
used that are deemed to provide an adequate picture of each
cyclone’s intensity, kinematics and thermal structure. These
are central pressure (CP), symmetry, compactness and the
upper-level thermal wind. The statistics of ensemble fore-
casts of these parameters will be examined in section 4,
together with those of storm position forecasts (see also the
explanation in section 2.6).

Storm intensity is represented by the cyclone’s central pres-
sure (i.e., its lowest MSLP). The intensity of Medicanes may
be slightly underestimated by ECMWF operational analysis
data due to insufficient horizontal resolution, an effect that
is estimated to be around 2 hPa (see, e.g., Cioni et al., 2016;
Pytharoulis, 2018). An even larger underestimation can be
expected for ensemble forecasts given their resolution (Picor-
nell et al., 2014; Walsh et al., 2014), which is half that of the
analysis data.

In order to quantify the symmetry of the cyclone’s low-level
circulation, a symmetry parameter S is defined for any MSLP
contour as follows: S = 1+arctan(!(4!A∕P2−1)), where A is
the area and P is the perimeter of the contour. This seemingly
complex formula is based on a straightforward expression of
symmetry (A∕P2); this function is then scaled (4!A∕P2) so
that maximum symmetry – a perfectly round contour – equals
1, and is finally stretched by applying the arctangent, so that
values of high symmetry are more widely spaced (otherwise
they would tend to bunch towards 1). The last step allows
one to better identify the highly symmetric, mature phase of
the cyclone and interpret the ensemble statistics more clearly.
The S parameter attains values of approximately 0.5, 0.2 and
0 for ellipse-shaped contours having a minor axis of length 1
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and major axes of length 2, 3 and 5, respectively. The sym-
metry parameter of any pressure low (hereafter referred to
as just “symmetry” for the sake of brevity) is obtained by
averaging S over the four innermost MSLP contours, spaced
at 1 hPa intervals. During their mature, tropical-like phase,
Medicanes attain high symmetry, with S values exceeding
0.8, as opposed to their early stages (and the majority of
extratropical cyclones) which have much lower S values.

Medicanes also tend to be much smaller than extratropical
cyclones, as already pointed out, with strong pressure gradi-
ents in the vicinity of their centres. In order to give a measure
of the gradient, a “compactness” parameter (hereafter referred
to as just “compactness”) is defined as the azimuthally aver-
aged radial MSLP gradient within a 150 km radius around the
cyclone centre, expressed in hPa/100 km.

Finally, to quantify the cyclone’s upper-level thermal struc-
ture (i.e., its cold or warm core) we make use of the
three-dimensional cyclone phase space (CPS) introduced by
Hart (2003), which is defined by storm-relative thickness
asymmetry B and lower- and upper-level thermal wind (−VL

T
and −VU

T , respectively). A positive (negative) sign of the−VU
T

parameter indicates an upper-level warm (cold) core, while
the absolute value is proportional to its magnitude. We do
not use lower-level thermal wind in our analysis, as positive
values of −VL

T characterise not only Medicanes but also extra-
tropical cyclones with a warm seclusion (Hart, 2003). Given
the lower height of the tropopause in the midlatitudes with
respect to the tropics (Picornell et al., 2014) and the smaller
size of Medicanes compared to tropical cyclones (Miglietta
et al., 2013), −VU

T is calculated in a slightly different way
from Hart (2003), using a smaller radius of 100 km and lower
levels of 925, 700 and 400 hPa similarly to (Picornell et al.,
2014). A 12-hr running mean is used in the present study
to smooth the CPS trajectories, differently from Hart (2003)
who uses a 24-hr mean: this choice is motivated by the short
life of most Medicanes and of their tropical-like phase in
particular.

2.4 Choice of the evaluation time window
Ensemble forecasts are evaluated against analysis data over
a time window rather than at a single forecast time. This
approach has the benefit of enhancing signals, in that the
desired features (e.g., a storm intensity maximum) can
be spotted over a larger set of forecast times (see also
section 2.6), thereby overlooking small timing errors (e.g.,
the maximum occurring a few hours earlier or later than
forecast). The rationale for our approach is to focus on spe-
cific storm features and consider a forecast to be sufficiently
accurate if the features are successfully predicted, albeit at a
slightly incorrect time. This strategy is especially valuable in
extracting information from early forecasts, for which only a
few members may have a cyclone and even fewer may have
it at the right place and time. In this case, tolerating small
timing errors allows more information to be extracted from

the forecast, such as whether a cyclone is predicted at all or
whether it exhibits tropical-like traits.

The evaluation time window (hereafter referred to as the
ETW) is 24 hr long and corresponds to five points (i.e., five
output times) of the cyclone track extracted from analysis data
(hereafter the “reference track”). Slightly shorter and longer
ETWs were tested before settling on 24 hr, showing little sen-
sitivity. The ETW is subjectively selected to best represent
the mature, tropical-like phase of the cyclone, on the basis of
the symmetry, compactness and the −VU

T parameters intro-
duced in section 2.3 (CP is not used, as the mature phase of
a Medicane often does not correspond to the most intense
phase).

An example of ETW selection is shown in Figure 1. As a
first step, the five consecutive reference track points that have
the highest average −VU

T value are selected, given that −VU
T

is considered the most relevant parameter in distinguishing
tropical-like cyclones from fully baroclinic cyclones (see,
e.g., Mazza et al., 2017). As a second step, the initial
five-point selection is shifted by at most two points, cor-
responding to a maximum of 12 hr earlier or later. This
adjustment is only applied when necessary in order to select
output times with as high symmetry and compactness as
possible. For storm Qendresa (Figure 1), for instance, the
initial selection is shifted one point to the left (6 hr ear-
lier), thereby increasing the average values of symmetry and
compactness.

2.5 Track matching
The tracking procedure outlined in section 2.2 is used for each
storm to retrieve the reference track as well as tracks of MSLP
lows in individual forecasts. The next step is to compare all
tracks from a single member of the ensemble with the refer-
ence track in order to find the best match, that is, the closest
and most similar track, which is to be considered as the given
member’s cyclone. In order to avoid penalizing (small) dis-
crepancies in the timings of storm motion and to take into
account the overall spatio-temporal similarity between tracks,
we use a DTW technique (Berndt and Clifford, 1994) which
has been successfully applied to a recent case study of North
Atlantic tropical transition (Maier-Gerber et al., 2019). Orig-
inally developed for speech recognition (Sakoe and Chiba,
1978), DTW is able to match two time series nonlinearly,
thereby taking into account differences in signal speed and
providing a more intuitive matching (Keogh and Ratanama-
hatana, 2005). Using the DTW technique to match cyclone
tracks allows us to focus on the spatial accuracy of the fore-
casts, ignoring small (local) timing errors as long as the
forecast track bears a high spatial similarity to the reference
one. The average time difference between DTW-paired track
points may later be used to assess whether there is an early
or late bias. In the following, we briefly describe the struc-
ture of the DTW technique to illustrate how it is applied to
matching cyclone tracks. The reader is referred to Berndt and
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(a)

(b)

FIGURE 1 Features of storm Qendresa (November 2014) as retrieved from the analysis data. (a) CP (hPa) and upper-level thermal wind −VU
T . (b) Symmetry

and compactness. The ETW is highlighted in grey; in this case the selected period is from 0600 UTC on November 7, 2014 to 0600 UTC on November 8, 2014

(a) (b)

FIGURE 2 Example of DTW matching of the reference track (blue) and a forecast track (red). Numbers denote times in UTC. (a) Spatial match; matched
track points are highlighted by a black dashed line. (b) Cumulative distance matrix M and warping path, represented as black filled circles, for the track match
in (a). The warping window is highlighted in red, while the equal-time match is highlighted in green [Colour figure can be viewed at wileyonlinelibrary.com]

Clifford (1994) and Keogh and Ratanamahatana (2005) for
more detailed explanations of the algorithm.

DTW requires first a suitable metric to express the spatial
distance between each pair of track points. We choose the
great-circle distance, but note that any distance metric could
in principle be used. The aim is then to minimise the overall
distance between the two input tracks R = r1, r2,… rm and
S = s1, s2,… sn by finding the best possible way of matching
them. To do so, an m× n distance matrix D is first computed:
D(i, j) = d(ri, sj) for each i = 1,… ,m and j = 1,… , n,
where d(ri, sj) is the spatial distance between the ri and sj track
points. A cumulative distance matrix M is then defined recur-
sively as follows: M(i, j) = D(i, j) + min[D(i − 1, j),D(i − 1,
j−1),D(i, j−1)]. The optimal match is finally obtained as the
warping path, defined as the succession of M elements min-
imising the cumulative distance at every point. Each element
of the warping path represents a pair of matched track points,
as shown in the fictitious example in Figure 2. We note that
the two tracks here have different lengths and that multiple
points of one track may be matched to a single point of the
other.

A DTW technique is usually applied with some constraints
that introduce physically meaningful requirements (Berndt
and Clifford, 1994). Monotonicity and continuity constraints
are first imposed to ensure that all track points are matched
at least once and with increasing time. A warping window
(highlighted in red in Figure 2) only allows the warping path
to exist in the vicinity of the diagonal of the M matrix (i.e.,
the succession of equal-time elements), thereby restricting the
time difference between any pair of matched track points to a
maximum absolute value of 12 hr. Using a warping window
ensures a physically meaningful track match, preventing the
match of two points that are spatially close but too distant in
time. Finally, boundary conditions require the warping path
to start from (end at) the forecast track point that is closest
to the first (last) analysis track point, to prevent the algorithm
from matching too many distant forecast track points to the
first or last analysis point, which it would be forced to do if
the forecast cyclone moved very quickly (an example is seen
in Figure 2, where the first two forecast track points are not
matched to the first analysis track point). These conditions
ensure that similarity is maximised in the matching process.

http://wileyonlinelibrary.com
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DTW is applied to match the reference track’s 24-hr ETW
to each track in an ensemble member. Only forecast tracks
that are at least 24 hr long (five output times) are considered.
Furthermore, a 48-hr interval is selected from each track,
spanning the ETW plus a further 12 hr (two output times) at
both ends, to meet the warping window constraint. If the fore-
cast track only exists for a fraction of these 48 hr, only the
existing part is considered (the example in Figure 2 shows the
longest possible forecast track, at 48 hr or nine output times).
The spatio-temporal distance between (the selected interval
of) the forecast and the reference tracks is finally computed
in two steps: first, the average distance between a single ref-
erence track point and all associated forecast track points is
computed; secondly, the final track distance is obtained by
averaging the result of the above calculation over all reference
track points.

For a given ensemble member, forecast tracks having a
600 km or larger spatio-temporal distance from the reference
track are discarded. This threshold has been chosen after test-
ing the sensitivity of the results to its value, similarly to
Maier-Gerber et al. (2019). If no forecast tracks are left, the
member is considered to have no cyclone (such members are
hereafter called “no-storm members”). Otherwise, the track
with the shortest spatio-temporal distance is considered to be
the best match, that is, the most similar to the reference track.
Members having a best match are hereafter called “storm
members”. The DTW technique has ultimately a twofold pur-
pose: it yields the exact point-by-point matching between any
forecast track and the reference track, and as a result it assists
in finding the best match among all tracks for a given member.

2.6 Evaluation of ensemble forecasts
The ensemble forecasts of the eight storms are evaluated in
section 4 from a fixed-event perspective (Pappenberger et al.,
2011), that is, by examining multiple consecutive forecasts
while focusing on a fixed period of forecast time (in this
case the ETW). Given that forecasts are evaluated over a time
window rather than at a fixed forecast time, lead times refer to
the central time of the ETW. For each storm, the latest fore-
cast considered is the one initialised either at the beginning of
the ETW, if this begins at 0000 or 1200 UTC, or 6 hr earlier
if the ETW begins at 0600 or 1800 UTC. For the sake of sim-
plicity, the latest forecast is always labelled as “0.5 day” (see
section 4) despite actually being an 18-hr forecast in cases
where the ETW begins at 0600/1800 UTC (this small 6-hr dif-
ference between cases does not affect the results). A total of
16 forecasts are examined for each case, the earliest being an
8-day forecast.

Ensemble forecast statistics for the eight cases are shown in
section 4. Box-percentile plots (Esty and Banfield, 2003) are
preferred over standard box-and-whisker plots because they
display the whole distribution of the input data. The width of
each irregular “box” is proportional to the percentile p of the
ordinate if p ≤ 50, or to 100−p if p > 50; the maximum width

is thus reached at the median, while outliers are revealed by
thin spikes at each tail.

As a further step to enhance the signals and relax the
requirement of an exact match between forecasts and analy-
sis, the extreme value of each parameter (the lowest value for
CP; the highest value for symmetry, compactness and −VU

T )
is considered when evaluating forecasts. The extreme value of
a given parameter is computed for each storm member within
the DTW-matched interval of its track (the best match found
by applying DTW as described in section 2.5) and compared
with the extreme value computed within the reference track’s
ETW.

Storm position forecast statistics (Figure 6) are investigated
by means of empirical orthogonal function (EOF) analysis.
For each storm member, a two-dimensional storm position
error is expressed as the average difference in longitude and
latitude between the reference track and the forecast track,
computed using the DTW-matched points in a similar man-
ner as for the spatio-temporal distance. EOF analysis (Wilks,
2011) is then performed on all two-dimensional error val-
ues for each forecast (one value for each storm member). The
eigenvectors of their covariance matrix define a rotated coor-
dinate system where variability is maximized along the x axis.
The spread of the storm position errors is proportional to
their variance in this coordinate system, and is represented in
Figure 6 as an ellipse whose axes are aligned to those of the
rotated system and have lengths proportional to the variance
along each eigenvector. This compact representation of storm
position errors provides an immediate visual overview of their
extent and spatial distribution.

3 OVERVIEW OF THE STORMS

The eight storms analysed in this study are briefly illustrated
here. A summary of their main features as retrieved from
the analysis data is given in Table 1, where storm duration,
period and region of occurrence are provided along with
extreme intensity, symmetry, compactness, 10 m wind speed
and upper-level thermal wind. Storm names were chosen by
the Institute of Meteorology at the Free University of Berlin.
The storm trajectories, intensity and upper-level thermal wind
values are displayed in Figure 3.

Of the eight storms, four developed or spent a significant
part of their lifetime over the Western Mediterranean and
three over the Southern Mediterranean and Ionian Sea; these
two regions are indeed hotspots for Medicanes (Cavicchia
et al., 2014a). In contrast, storm Stephanie is technically not
a Medicane, in that it occurred outside of the Mediterranean
Sea. Stephanie has been included in our study as it exhib-
ited the same tropical-like traits as a Medicane (Maier-Gerber
et al., 2017), formed under similar large-scale circulation pat-
terns and occurred in a region that is geographically and
climatologically close to the Mediterranean. Five of the eight
storms occurred in November, the most frequent month in our
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FIGURE 3 Tracks of the eight storms. The colour of each circle represents the −VU
T value, while its size represents the CP value [Colour figure can be

viewed at wileyonlinelibrary.com]

sample; the three remaining storms occurred in September,
October and January, respectively. We note in passing that
this temporal distribution differs from the one relating to the
1948–2011 climatology produced by Cavicchia et al. (2014a),
which has a maximum in January.

The data in Table 1 and the cyclone tracks in Figure 3
show the high heterogeneity of the eight storms in terms
of their duration (Ruven developed rapidly and only lasted
48 hr, Numa remained almost statically over the Ionian Sea for
36 hr and lasted 120 hr), intensity (almost 20 hPa difference
between the most intense, Qendresa at 986 hPa, and the least
intense, Trixie at 1005 hPa), compactness (Qendresa reached

a 10.8 hPa/100 km MSLP gradient, while Ilona reached only
3.2 hPa/100 km) and thermal structure (most storms devel-
oped a moderate upper-level warm core, yet storms Ruven
and Qendresa failed to attain one, with upper-level ther-
mal wind −VU

T peaking slightly short of zero). We observe
here that even though storm Qendresa did not attain an
upper-level warm core, it is widely recognised as a Med-
icane (Pytharoulis et al., 2017; Pytharoulis, 2018; Cioni
et al., 2018). In fact, a unique, objective definition of what
constitutes a Medicane has not yet been established in the
literature (Fita and Flaounas, 2018). However, all storms anal-
ysed in this study share some distinctive traits, in that at some

http://wileyonlinelibrary.com
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(a) (b)

FIGURE 4 Ensemble forecasts of CP for storms Qendresa (a) and Trixie (b). Upper panels: Box-percentile plots, with white stripes marking the 25th, 50th
(median) and 75th percentiles; light grey circles show the control forecast values (provided the storm has a cyclone), while the dashed line is the operational
analysis value. Lower panels: The number of members having a cyclone (no cyclone) are represented by dark (light) grey bars

point during their life cycle they shrank notably, acquiring a
highly axisymmetric circulation with strong MSLP gradients
while quickly moving towards positive values of upper-level
thermal wind (i.e., building a warm core). Another feature
shared by most storms is their weakening or even fading after
making landfall, which is consistent with the fact that Medi-
canes, similarly to tropical cyclones, are strongly influenced
by surface fluxes (Fita et al., 2007; Tous et al., 2013).

4 RESULTS

In this section, forecasts of several parameters are anal-
ysed, with a focus on the evolution of ensemble statistics
with lead time. Forecasts of cyclone occurrence are first
examined in section 4.1. Cyclone position forecasts are then
explored in section 4.2. To analyse the storms’ thermal struc-
ture, upper-level thermal wind forecasts are examined in
section 4.3. The kinematic structure and intensity of the eight
storms are finally discussed in section 4.4.

Two examples of the evolution of ensemble forecasts are
provided in Figure 4, which shows CP forecasts for storms
Qendresa and Trixie. These two cases illustrate the high vari-
ability among both Medicane features (see also section 3) and
their forecasts. Qendresa is the deepest cyclone of the eight
cases, with 986 hPa minimum pressure in the ETW. For this
storm, the probability of cyclone occurrence (i.e., the number
of storm members) is already high at 7.5 days lead time (days
LT) (Figure 4a) and remains high throughout. Conversely, the
ensemble median CP is much higher (by up to 14 hPa) than

the analysis value, with the latter consistently lying at the far
lower end of the forecast distribution or even well below the
lowest member. A small but evident dip is seen around 4 days
LT for both occurrence probability and storm intensity. On
the other hand, Trixie is the weakest cyclone in our list, with
over 1,009 hPa, although it is very long-lived with a lifetime
of 96 hr (Table 1). For this storm, occurrence probability is
much lower than 0.5 at lead times longer than 3 days, with a
considerable increase between 2.5 and 1 day LT (Figure 4b).
The distribution of CP forecasts also shifts from having a large
spread and being mostly or entirely below the analysis value
(up to 5 days LT) to being mostly above it (lead times shorter
than 3 days) with a much smaller spread.

In both these cases, the evolution of ensemble forecasts
with lead time is far from gradual, with storm intensity fore-
casts showing little convergence towards the analysis value
for Qendresa, while an early convergence is followed by a
plateau for Trixie; the probability of cyclone occurrence is
consistently high for Qendresa, whereas for Trixie it is very
low for early forecasts, but grows rapidly for late forecasts:
we refer to such rapid changes in the ensemble statistics as
“forecast jumps,” as already noted in section 1. We stress here
that the distributions shown in the upper halves of Figures 4,
7 and 8, as well as in the ellipses in Figure 6, are conditional
distributions, that is, they only comprise storm members
and omit no-storm members. Storm occurrence probabilities
(appearing in the lower halves of Figures 4, 7 and 8 and
shown as colour saturation in Figure 6) then need to be taken
into account to get the full picture and correctly interpret the
forecast evolution.
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FIGURE 5 Difference in the number of storm members (proportional to
cyclone occurrence probability) between the current and previous forecast,
for each lead time and for all cases. Values are smoothed with a 1–2–1
running mean to reduce noise [Colour figure can be viewed at
wileyonlinelibrary.com]

4.1 Cyclone occurrence forecasts
Medicanes develop because of a combination of factors span-
ning multiple spatial and temporal scales and are therefore
low-frequency events (Cavicchia et al., 2014a). Early signals
of the occurrence of a cyclone, as seen in ensemble fore-
casts 5–8 days in advance, are thus to be considered a valuable
first piece of prognostic information. For this reason, cyclone
occurrence forecasts are examined as a first insight into the
predictability of the eight storms.

A benefit of using ensemble forecasts instead of deter-
ministic forecasts is better consistency between consecutive
forecasts (Buizza, 2008; Zsoter et al., 2009). One could there-
fore expect a somewhat gradual increase of the probability of
cyclone occurrence with decreasing lead time. This is not the
case for most storms analysed in the present study, as fore-
casts often exhibit a distinctly rapid increase in occurrence
probability at some lead times (known as a forecast jump).
In order to extract such signals, the difference in the number
of storm members between consecutive forecasts is computed
and is shown in Figure 5. Seven of the eight cases exhibit
distinct positive peaks, signifying a rapid increase in occur-
rence probability over a short interval of lead time: Qendresa
(7.5 days LT), Numa (around 7 days), Ruven (6 to 5 days), Rolf
(around 5.5 days), Ilona (around 5 days), Stephanie (double
peak around 5 and 3 days) and Trixie (2 to 1 day). These peaks
stand out above the bulk of the values, which are contained
between −1 and 5. Two cases also exhibit distinct negative
peaks: Qendresa (4 days LT) and Ilona (3 to 2 days). Only
one case, Xandra, shows a gradual increase of occurrence
probability throughout all forecasts.

We note here that six of the seven occurrence forecast jumps
are found at lead times longer than 4 days. A notable exception

is Trixie, for which occurrence probability does not increase
above 50% until 2 days LT. These results are consistent with
the low likelihood of Medicane occurrence and the hypoth-
esis that occurrence probability increases significantly only
when the forecast model’s initial data contain sufficient infor-
mation on all processes impacting Medicane formation. Such
predictability barriers constitute a source of significant unpre-
dictability, as discussed, for example, by Riemer and Jones
(2014) in relation to bifurcation points in the context of extrat-
ropical transition, and by Pantillon et al. (2016) with regard to
the interaction between a hurricane and an upper-level cut-off.

4.2 Cyclone position forecasts
The impacts of Medicanes can be considerable (Cavicchia
et al., 2014a), but are spatially limited to small regions due
to their small size. For this reason, an accurate prediction of
their trajectory is key in preventing and mitigating the damage
they cause locally. The next step in evaluating the ensemble
forecasts of the eight storms is thus to examine their predicted
position during their mature, tropical-like phase.

Cyclone position forecast statistics are shown in Figure 6,
where the median of the position errors is represented as an
arrow and the forecast spread as an ellipse whose axes (and
hence area) are proportional to the variance of the position
errors (see section 2.6). These forecasts appear to converge
more gradually compared with cyclone occurrence forecasts,
as demonstrated by the overall slow variation of the size and
tilt of both the arrows and the ellipses over lead time (the con-
vergence is towards a median and spread value which is very
close to zero, but not exactly zero as forecasts are evaluated
in a time window). However, rapid changes of one or more
of these quantities (referred to as “position forecast jumps”)
are visible at some lead times for some cases. For instance,
a sudden decrease in spread, with the ellipse decreasing
in size by 30% or more between consecutive forecasts, is
seen for Ilona (3 days LT), Numa (5.5 and 4.5 days), Qen-
dresa (2 days), Rolf (5.5 days), Stephanie (3 days) and Xandra
(6 days). Rapid changes in the magnitude of the median error
are also apparent for Ilona (3 days LT), Qendresa (5.5 days),
Ruven (5.5 and 4 days), Stephanie (3 days), Trixie (1 day)
and Xandra (3.5 days). Position forecast jumps occur in most
cases at slightly shorter lead times than occurrence forecast
jumps (the difference is 2 days or less for Qendresa, Ilona,
Numa, Ruven and Trixie, while the jumps occur at the same
lead time for Rolf and Stephanie). This suggests the existence
of a causal link between increased occurrence probability and
higher accuracy of position forecasts.

It is worth noting that the spatial distribution of position
errors tends to evolve slowly with lead time. For instance,
forecasts exhibit a consistent northwestern bias for Ilona (i.e.,
the storm is predicted to occur too far to the northwest),
a southern to southeastern bias for Numa, a southwestern
bias for Rolf, a northeastern bias for Stephanie (at least until
3 days LT) and a large western to southwestern bias for Trixie

http://wileyonlinelibrary.com
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FIGURE 6 Statistics of cyclone position forecasts. For any given forecast, only storm members are considered. The red arrow represents the median of the
position errors, its components being longitude (horizontal) and latitude (vertical). The blue ellipse is a bivariate normal distribution fit to the position errors,
representing their spread; it is scaled so as to encircle 95% of the error points. The ellipse is oriented along the direction of maximum variability of the error
values and its axes are proportional to their variance in the two-dimensional rotated coordinate system defined by the eigenvectors of their covariance matrix
(see section 2.6). To improve readability of the plot, two different scales are used for the median (arrows) and the actual errors (ellipses), and each arrow is
made to begin from the centre of the corresponding ellipse, even though this point does not correspond to zero error. The more storm members, the stronger
the colour of both the ellipses and the arrows [Colour figure can be viewed at wileyonlinelibrary.com]

(although in this case with low occurrence probability until
2 days LT). Similarly, position errors are consistently dis-
tributed from west to east for Numa and Trixie, from northwest
to southeast for Qendresa and from southwest to northeast for
Rolf and Xandra. In summary, the region where the cyclone
is predicted to occur often tends to remain the same between
consecutive forecasts. This implies that early forecasts may
already contain valuable prognostic information, in that the
actual cyclone position may be approximately estimated early
on by examining the spatial distribution of position forecasts.
One explanation for this may be that certain areas of the
Mediterranean Sea are more conducive to Medicane develop-
ment than others (Tous and Romero, 2013; Cavicchia et al.,
2014a), so it is more likely that the cyclone will be predicted
to spend its mature phase in these regions.

4.3 Thermal structure forecasts
After assessing whether a cyclone is going to occur or not
and where it is going to occur, the next step is to analyse

its thermal structure. For this reason, we now examine fore-
casts of upper-level thermal wind, represented by the −VU

T
parameter, which are shown in Figure 7. The evolution of
these forecasts with lead time is generally neither gradual
nor monotonic, as already noted with regard to forecasts of
cyclone occurrence (section 4.1). Overall, the forecast spread
does not consistently reduce with decreasing lead time, with
some cases exhibiting a smaller (Qendresa and Stephanie)
or comparable (Ilona, Rolf, Ruven and Xandra) spread at
long lead times compared with the latest forecasts. Similarly,
in some cases the forecast distribution increasingly deviates
from the analysis value with decreasing lead time, only to get
closer again in later forecasts (e.g., Ilona, Numa, Qendresa,
Rolf and Stephanie).

Storms Rolf and Numa (Figure 7a,h, respectively) show a
similar evolution, with the forecast distribution increasingly
drifting away from the analysis value and the spread increas-
ing in parallel, until the forecast distribution is mostly or even
entirely below the analysis value. The forecast distribution
then converges again towards the analysis, while the spread

http://wileyonlinelibrary.com
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FIGURE 7 The same as Figure 4, but for upper-level thermal wind (−VU
T ) forecasts and for all storms
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decreases, first slowly and then much more quickly, to even-
tually level off at short lead times. Storms Ilona and Ruven
instead exhibit a contrasting evolution. For Ilona (Figure 7c)
the forecast distribution twice drifts away from the analysis
value with decreasing lead time, to eventually approach it in
the latest forecasts; the spread oscillates considerably between
consecutive forecasts throughout the period considered. For
Ruven (Figure 7b) the distribution changes little in shape and
position, with the spread remaining almost constant through-
out all forecasts and the median always somewhat close to the
analysis value.

A peculiar evolution is exhibited by storm Xandra
(Figure 7e). Early forecasts have very little spread and the
analysis value lies consistently beyond the upper end of the
forecast distribution. The spread then increases considerably
between 4 and 2 days LT as the distribution shifts to higher
−VU

T values. The spread finally decreases again rapidly in
the latest forecasts, while the forecast distribution remains
slightly below the analysis value for the most part. We inter-
pret this behaviour as follows: with relatively high storm
occurrence probability (0.6 and higher) and little spread at
longer lead times, ensemble forecasts indicate the develop-
ment of a weaker warm core or a cold core. The increase
in spread with decreasing lead time, which is associated
with a slight rise in the occurrence probability, indicates that
new information available in the initial conditions allows the
development of a warmer upper-level core to occur in some
ensemble members, that is, a higher probability of a Medicane
developing.

Forecasts of cyclone thermal structure do not appear to
be consistently linked to occurrence probability. However,
some cases show interesting behaviours: for instance, for
Rolf (Figure 7a) the forecast distribution closely approaches
the analysis value only when the probability is higher than
0.8; for Stephanie (Figure 7f) the increase in occurrence
probability around 4.5 days LT appears to be associated at
first with a broadening of the −VU

T forecast distribution
and later with its shift towards lower values; for Trixie
(Figure 7g) the rapid increase in occurrence probability at
2 days LT is associated with a reduction in the −VU

T forecast
spread.

In all cases, forecasts initialised when the cyclone has
already developed have a much lower spread of upper-level
thermal wind than previous forecasts, and their distribution
also tends to be closer to the analysis value. This is proba-
bly explained by the inherently low probability of Medicane
occurrence and the fact that the development of a warm core
depends on a variety of factors, including small-scale ones
such as surface fluxes, so that a pre-existing cyclone con-
stitutes a marked improvement in the initial conditions. We
observe that the latest (0.5 day) −VU

T forecast is more accurate
than earlier ones in most cases, in terms of the ensemble distri-
bution being closer to the analysis value and its spread being
lower, while the analysis value lies within the distribution in
all cases. Overall, this is evidence that the ECMWF ensemble

model can adequately reproduce warm-core cyclones despite
its relatively low horizontal resolution.

4.4 Kinematic structure and intensity forecasts
The last step in our analysis of the ensemble forecasts for
the eight storms is to assess how their kinematic structure
and intensity are predicted by examining forecasts of sym-
metry, compactness and CP. Overall, these forecasts also
show a non-gradual evolution with lead time, as previously
observed for occurrence, position and thermal structure fore-
casts. Specifically, the forecast distribution often does not
converge gradually or monotonically towards the analysis
value, the spread does not always decrease gradually or mono-
tonically, and forecast jumps occur at some lead times for
most cases. However, the evolution of these forecasts is more
gradual than that of the forecasts previously examined. For
this reason, we focus here on the overall performance of these
forecasts rather than on their evolution with lead time. Full
forecast statistics are only shown for two representative cases,
namely Numa for compactness (Figure 8a) and Stephanie for
symmetry (Figure 8b).

It is apparent that the forecast distribution of both compact-
ness and symmetry consistently lies mostly, if not entirely,
below the analysis value in these two cases, though with a
clear convergence towards the analysis value at short lead
times. These two forecasts are representative of compact-
ness and symmetry forecasts for other cases, in that a similar
behaviour is seen for most cases. One could naturally expect
compactness to be systematically underpredicted to some
extent, given the low resolution of the ECMWF ensemble pre-
diction model. However, the clear convergence of forecasts
at short lead times, with a markedly reduced spread and an
overall much closer distribution to the analysis value, as well
as the fact that the distribution tails reach or exceed the anal-
ysis value even at long lead times, indicates that the model
is capable of producing high values of compactness. More-
over, compactness and symmetry forecasts appear to be well
correlated with each other, so that high values of either param-
eter are associated with high values of the other. We conclude
that the underdispersion arises at long lead times because the
occurrence of a very symmetric and compact storm is a highly
unlikely event and, as such, it is by its nature near the tail
of the forecast distribution (especially at long lead times),
as observed by Majumdar and Torn (2014). Late forecasts
thus tend to converge at short lead times as they benefit from
improved initial conditions.

Finally, we note that CP forecasts (not shown) are overall
the most gradually evolving forecasts with lead time, albeit
with a tendency for the distribution to lie mostly (or, more
rarely, entirely) above the analysis value at long lead times
for many storms, which is associated with the low probabil-
ity of cyclone occurrence in early forecasts. This hypothesis
is supported by forecasts of Qendresa, the most intense of the
eight storms (see section 3), for which the analysis value lies
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(a) (b)

FIGURE 8 The same as Figure 4, but for (a) the compactness forecast for Numa and (b) the symmetry forecast for Stephanie

consistently at the far lower tail of the forecast distribution at
long lead times (Figure 4a). Qendresa indeed underwent an
extremely rapid development (with a pressure drop of more
than 15 hPa in 18 hr; see Cioni et al., 2018) which appears
as highly unlikely especially in early forecasts, although the
probability of cyclone occurrence is high from 7 days in
advance (Figure 4). The fact that the underdispersion is more
evident for symmetry and compactness than for CP supports
the idea that Medicanes are more distinctly characterised by
their high compactness and symmetry than by their intensity,
with the former far less predictable than the latter, especially
at long lead times.

5 SUMMARY

Medicanes have been gaining increased attention in the
research community in the last two decades. These storms
constitute a major threat in the Mediterranean region, due
to intense winds and rainfall. Although the pathway leading
to the formation of Medicanes is by now well known, they
remain elusive characters of the Mediterranean climate, in
that their frequency of occurrence is low and an objective
definition has not yet been established. Predicting Medicanes
also poses a considerable challenge, due to scarce observa-
tions over the sea and the interplay between the numerous
factors influencing their entire life cycle at multiple spatial
and temporal scales.

In this article, the predictability of eight southern European
tropical-like cyclones – seven Medicanes and the first-ever
documented case of such a storm in the Bay of Biscay

– is analysed by evaluating ECMWF operational ensem-
ble forecasts against operational analysis data. We apply an
object-based approach that allows us to focus on specific
storm features, while tolerating their shifts in time and space
to some extent. Each storm is then treated as an object and
its forecasts are evaluated using suitable parameters: CP,
symmetry, compactness and −VU

T , which give a measure
of the cyclone’s intensity, symmetry, pressure gradient and
upper-level thermal structure, respectively. The tropical-like
traits attained during the mature phase of the cyclone’s
life cycle are therefore well represented. This object-based
approach has shown strength in extracting the most rele-
vant information from the data, and value in condensing it
into intuitive quantities: for these reasons, it could easily
be applied to other types of forecasts and atmospheric fea-
tures. The DTW technique in particular appears promising for
further application in the atmospheric sciences due to its intu-
itiveness and flexibility in providing a meaningful space–time
matching of time series.

Findings reveal that the evolution of ensemble forecasts
with lead time is far from gradual, generally differing from
steady convergence towards the analysis value that may be
expected (Buizza, 2008). In particular, rapid increases in the
probability of cyclone occurrence (forecast jumps) are seen
in most cases. This behaviour is consistent with the existence
of predictability barriers, which are overcome only, as we
hypothesise, when initial conditions adequately represent the
variety of factors playing a role in Medicane development.
Cyclone thermal structure forecasts also exhibit a non-gradual
evolution in some cases, with the forecast distribution drift-
ing away from the verifying analysis value and the spread
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increasing with decreasing lead time. However, late forecasts
which have been initialised when the storm has already devel-
oped tend to be more accurate than earlier forecasts. This
supports previous findings of high sensitivity of Medicane
simulations to initial conditions (Cioni et al., 2016).

On the other hand, forecasts of cyclone position exhibit a
visible tendency to a consistent spatial distribution of cyclone
position uncertainty and bias (i.e., a non-zero median posi-
tion error) between consecutive forecasts, which may be
explained by the fact that some regions of the Mediterranean
Sea are more conducive to Medicane development than oth-
ers (Tous and Romero, 2013; Cavicchia et al., 2014a), thus
favouring the occurrence of the cyclone in the same region
between consecutive forecasts. This implies that early fore-
casts may already contain valuable prognostic information on
the cyclone’s position during its mature phase.

Unlike other parameters, forecasts of compactness and
symmetry consistently exhibit underdispersion at long lead
times in most cases. A marked improvement of these forecasts
is however seen at short lead times. In light of these contrast-
ing behaviours, we exclude the presence of any systematic
bias that could be expected due to the relatively low resolution
of the ECMWF ensemble model. We instead deem the under-
dispersion to be a result of the intrinsically low probability of
the occurrence of a Medicane (that is, a highly axisymmet-
ric and compact storm) in early forecasts, which causes it to
be found near the tail of the forecast distribution, as observed
by Majumdar and Torn (2014). We interpret in the same way
the underdispersion tendency appearing in CP forecasts at
long lead times in some cases. Considering all parameters,
forecasts indicate that the ECMWF ensemble model can ade-
quately reproduce Medicanes in terms of their tropical-like
traits, albeit only at relatively short lead times.

The present work paves the way towards an in-depth inves-
tigation of the physical mechanisms underlying the features
revealed by our analysis, in particular the non-gradual evo-
lution of forecasts with lead time, forecast jumps and the
consistent spatial distribution of cyclone position forecasts. A
future study will examine the complex interplay between pro-
cesses at different spatial and temporal scales leading to the
formation of a Medicane and its impact on their predictability
and the evolution of ensemble forecasts with lead time.
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