National Weather Service National Centers Environmental Prediction

The WRF NMM Overview of PBL, Surface Layer, Moist Convection and Microphysics

Zavisa Janjic and Brad Ferrier (Presented by Tom Black)

Zavisa Janjic

noaa

Mellor-Yamada-Janjic Turbulence

- TKE production due to shear and buoyancy
- TKE dissipation (Kolmogorov)
- Exchange coefficients (v. Heisenberg) $K \propto const \ l \ q$
- Derivation from basic principles, proportionality factors in exchange coefficients for heat and moisture, *l*, empirical constants (Mellor and Yamada 1982)

 $K_M = S_M lq, K_H = S_H lq$

 Removing singularity in TKE production/dissipation Eq in convectively driven growing turbulence, constraints on mixing length in stable & unstable ranges, revised constants, numerics (Janjic 1996, 2001), phase changes

$$d(q^2/2)/dt - (\partial/\partial z)[\ell q S_q (\partial/\partial z)(q^2/2)] = P_s + P_b - \varepsilon$$
(2.1)

$$P_{\rm s} = -\langle wu \rangle (\partial U/\partial z) - \langle wu \rangle (\partial V/\partial z), P_{\rm b} = \beta g \langle w\theta_{\rm v} \rangle, \varepsilon = q^3/(B1 \ \ell)$$
(2.2)

$$-<\!\!wu\!\!> = K_{\mathrm{M}} \,\partial U/\partial z, \, -<\!\!wv\!\!> = K_{\mathrm{M}} \,\partial V/\partial z,$$

$$-\langle w\theta_{v} \rangle = K_{\rm H} \,\partial \Theta_{v} / \partial z, \, -\langle ws \rangle = K_{\rm H} \,\partial S / \partial z, \tag{2.3}$$

$$K_{\rm M} = \ell \ q \ S_{\rm M}, K_{\rm H} = \ell \ q \ S_{\rm H}, \tag{2.4}$$

$$S_{\rm M} (6 A1 A2 G_{\rm M}) + S_{\rm H} (1 - 3 A2 B2 G_{\rm H} - 12 A1 A2 G_{\rm H}) = A2,$$
 (2.5)

 $S_{\rm M}(1+6 A 12G_{\rm M}-9 A 1A2G_{\rm H})-S_{\rm H} (12 A 12 G_{\rm H}+9 A 1 A 2 G_{\rm H})=A1(1-3 C1), (2.6)$

$$G_{\rm M} = (\ell^2/q^2) [(\partial U/\partial z)^2 + (\partial V/\partial z)^2], \ G_{\rm H} = - (\ell^2/q^2) \beta g \partial \Theta_{\rm v}/\partial z.$$
(2.7)

Computation of ℓ

Constants

 Singularity problem, limit on ℓ in unstable range (Janjic 2001)

TKE production/dissipation Eq

$$\partial q/\partial t = (q^2/\ell) \left[S_{\rm M} G_{\rm M} + S_{\rm H} G_{\rm H} - 1/B1 \right]$$

$$\ell \ d(1/q)/dt = -\{[A(\ell/q)^4 + B(\ell/q)^2]/[C(\ell/q)^4 + D(\ell/q)^2 + 1] - 1/B1\},\$$

A,*B*,*C*,*D* depend on large scale flow

- For given large scale flow TKE production/dissipation depends only on ℓ/q ratio, "return to isotropy time"

- Singularity occurs in case of growing turbulence in unstable regimes
- ℓ cannot be computed independently of q, upper limit on ℓ must be imposed
- Limit on ℓ in stable range, from internal relations From limit of $\langle w^2 \rangle / q^2$ in case of vanishing turbulence

Constants

Ri≤0.505

Numerics

TKE production/dissipation Eq

$$\ell \ d(1/q)/dt = -\{[A(\ell/q)^4 + B(\ell/q)^2]/[C(\ell/q)^4 + D(\ell/q)^2 + 1] - 1/B1\}$$

- Linearized around equilibrium solution and iterated to required accuracy (three iterations, unrolled loop)
- Phase changes
 - Liquid potential temperature (Bechtold et al., 1995), needed in cloud scale runs

Janjic Surface Layer Parameterization

 Turbulent fluxes constant with height, boundary conditions prescribed at two levels, z₁ and z₂

$$M = -\langle u'w' \rangle = K_M \, dU/dz , \quad H = -\langle \Theta'w' \rangle = K_H \, d\Theta/dz ,$$

$$H_v = -\langle \Theta_v'w' \rangle = K_H \, d\Theta_v/dz , \quad E = -\langle q'w' \rangle = K_H \, dq/dz$$
(1)

Often used scales

$$u^* = M^{1/2}, \ \Theta^* = H/u^*, \ \Theta_v^* = H_v/u^*, \ E^* = E/u^*$$
 (3)

• *F* is a generic flux, constant with height, integrate

$$F = K_F dS/dz$$

$$Z_2$$

$$S_2 - S_1 = F \int dz/K_F$$

$$Z_1$$
• Define bulk exchange coefficient

$$\begin{array}{c} z_2 \\ (z_2 - z_1) / K_{Fbulk} = \int dz / K_F \end{array}$$

Fluxes in finite-difference form

$$F = K_{Fbulk} (S_2 - S_1) / (z_2 - z_1)$$

Zavisa Janjic

(4)

(5)

(6)

Similarity theory

$$\partial S/\partial z = [S^*/(kz)] \varphi_F(\zeta)$$
 Highly implicit! (7)

 $S^* = F/M^{1/2} = F/u^*$ (8)

φ_F empirical functions

$\zeta = z/L$ nondimensional combination (9)

 $L = M^{3/2} / (k \beta g H_{\nu})$ Obukhov length scale (10)

$\beta = 1/\Theta_0 \approx 1/273^\circ \mathrm{K}$

 $z/L \rightarrow 0$ ($z \rightarrow 0$ or $L \rightarrow \infty$), $\varphi_F(0) = \text{const}$ (typically close to 1)

Integrate the profiles

$$S_{2}-S_{1} = \int [S^{*}/(k z)] \varphi_{F}(\zeta) dz$$

$$z_{1}$$

$$S_{2}-S_{1} = (S^{*}/k) \int (L/z) \varphi_{F}(\zeta) dz/L$$

$$z_{1}$$

$$\zeta_{2}$$

$$S_{2}-S_{1} = F/(u^{*}k) \int \varphi_{F}(\zeta) d\zeta/\zeta$$

$$\zeta_{1}$$

(11)

Singular point when *L* tends to infinity and
$$\zeta$$
 tends to zero

$$S_{2}-S_{1}=F/(u^{*}k)\int_{\zeta_{2}}^{\zeta_{2}}[\varphi_{F}(\zeta)-\varphi_{F}(0)] d\zeta/\zeta+\varphi_{F}(0) d\zeta/\zeta$$

$$S_{2}-S_{1}=F/(u^{*}k)\{\int_{\zeta_{2}}^{\zeta_{2}}[\varphi_{F}(\zeta)-\varphi_{F}(0)] d\zeta/\zeta+\varphi_{F}(0)\int_{\zeta_{2}}^{\zeta_{2}}dz/z\}(12)$$

$$\varphi_F(\zeta)$$
 known, integral on the rhs of (12) can be evaluated

 ζ_1

$$\Phi_F = \Psi_F(\zeta_2) - \Psi_F(\zeta_1) + \varphi_F(0) \ln(z_2/z_1)$$
(13)

$$S_2 - S_1 = [F/(u^* k)] \Phi_F$$
 (14)

 Z_1

F=*M*, *S*=*U*,
$$\Phi_F = \Phi_M$$
, from (14)
 $U_2 - U_1 = [M/(u^* k)] \Phi_M$
and
 $U_2 - U_1 = (u^*/k) \Phi_M$

- If z₁, z₂, U₁, U₂ and L are known, u* and consequently momentum flux M can be obtained from (15)
- After *u**, any other flux *F* can be computed from (14)

$$S_2 - S_1 = [F/(u^* k)] \Phi_F$$
 (14)

(15)

- L depends on fluxes, highly implicit equations
- Iterative approach
 - Accurate
 - Flexible
 - Allows different z0's for different variables
- Integral functions Ψ_F
 - Paulson (1970) unstable range
 - Holtslag & DeBruin (1988) stable range

- Lower boundary condition
 - Independent of stratification, the profiles assume logarithmic form near lower boundary, singularity for z=0
 - Log profiles end at small but finite height *z0* (roughness height or roughness length), variables take on their lower boundary values at this height
 - Variation of z0 significantly affects fluxes

- Viscous sublayer next to surface, no space for turbulent eddies, molecular transports limit fluxes
 - Implicit, through z0 over land, Zilitinkevich (1995)
 - Explicit over water, Janjic (1994)

Betts-Miller-Janjic Convection Scheme

- Triggering mechanism
- Cloud model, blend of (i) Betts (1986) temperature profiles and (ii) Janjic (1994) moisture profiles and relaxation time scale

Triggering mechanism

- Find maximum buoyancy level in lower troposphere
- Cloud base just below the lifting condensation level
- Cloud top where the particle loses buoyancy

In ascent without entrainment *fup*=0

In ascent with entrainment fup≠0 *(for higher resolutions only)*

Check for positive work of buoyancy force EPSNTT (for higher resolutions only)

- Abort if work of buoyancy force negative, and positive is required (for higher resolutions only)
- Abort if cloud height does not reach the threshold for convection
- Deep convection, if cloud height exceeds the deep convection threshold
- Shallow convection, if cloud height exceeds the threshold for convection, but not the threshold for deep convection

Cloud model

- Reference profiles for temperature and humidity
- Relaxation toward reference profiles

- Deep convection reference profiles
 - 1st guess temperature (Betts, 1986)
 - Somewhat less stable than moist adiabat below freezing level
 - tends to the moist adiabat as the cloud top is approached
 - 1st guess moisture profile (Janjic, 1994)
 - Cloud efficiency=const x entropy change/precipitation
 - No single prescribed moisture reference profile, two envelope profiles
 - No single prescribed relaxation time
 - Moisture reference profile and relaxation time depend on cloud efficiency

- Final reference profiles imposing enthalpy conservation
- If precipitation negative, or entropy change below threshold EPSNTP, abort deep convection and try shallow convection with lower cloud top
- Otherwise, relax toward deep reference profiles
- Shallow convection reference profiles
 - Temperature, mixing line (Betts, 1986)
 - Moisture, requirements for enthalpy conservation, small positive entropy change (Janjic, 1994)

Problem, convection at single digit resolutions

- Too much convection, spread out light precipitation
- Too little convection, precipitation bulls-eyes (CICK)
- Trimming excessive convection
 - Moister reference profiles
 - Minimum entropy change required for onset of convection (EPSNTP)
 - Entrainment (FUP)
 - Positive work of buoyancy during ascent (EPSNTT)

NCEP Operational Model Suite
 ➤ "Jigsaw puzzle" from 2004 of NCO productions
 ➤ Lesson: Models must be efficient

Overview of Ferrier microphysics

- Calculates mixing ratios of water vapor, cloud water, rain, and ice ("cloud ice" + "precipitation ice")
 - <u>Flowchart</u> depicting microphysical sources & sinks
 - <u>List</u> of microphysical processes
- Precipitation sedimentation partitioned between storage in grid box & fall out through bottom of box
- Only water vapor and total condensate are advected; an <u>algorithm</u> is used to derive hydrometeors from total condensate using storage arrays
- Supercooled liquid water allowed to T_{ice} (= -30°C)
- <u>Assumed ice spectra</u> based on global observations of stratiform layer clouds by Ryan (1996, 2000)
- Other features of scheme are summarized <u>here</u>
- More info at <u>this ppt talk</u>; also contact <u>Brad.Ferrier@noaa.gov</u>

List of microphysical processes

 $Q_v = vapor, Q_c = cloud water, Q_r = rain, Q_i = ice$

Acronym	Process Description	Source	Sink
CND	Cloud condensation (>0), evaporation (<0)	Q _c	Q _v
REVP	Rain evaporation	Q _v	Q _r
RAUT	Cloud water autoconversion to rain	Q _r	Q _c
RACW	Cloud water accretion by rain	Q _r	Q _c
DEP	Ice initiation and deposition (>0), sublimation (<0)	Q _i	Q _v
IMLT	Melting of ice	Q _r	Q _i
IACW	Cloud water accretion by ice (riming)	Q _i	Q _c
IACWR	Cloud water accretion by melting ice, shed to rain	Q _r	Q _c
IACR	Rain accretion by ice	Q _i	Q _r
IEVP	Evaporation of (wet) melting ice	Q _v	Q _i
Zavisa Janjic return to overview WRF NMM, August 2006 24			

- (a) Input: existing precipitation in grid box (q_k^N) + timeaveraged sedimentation from above (P_{k-1}^{N+1})
- (b) Microphysical sources/sinks based on time-averaged mixing ratio, q_K^{N*}
- (c) Partition storage (q_k^{N+1}) and precipitation through bottom of box (P_k^{N+1}) based on thickness of model layer $(\rho \Delta z)$ & estimated fall distance $(\Delta t \cdot V_k)$

Zavisa Janjic

K

return to overvie F NMM, August 2006 26

Deriving hydrometeors from total condensate

- \succ Water vapor (q_v), total condensate (q_t) advected in model (efficient)
- > Cloud water (q_w) , rain (q_r) , cloud ice (q_i) , precip ice ("snow", q_s) calculated in microphysics
- \succ Local, saved arrays store fraction of condensate in form of ice (F_i), fraction of liquid in form of rain (F_r) . Assumed fixed with time in column between microphysics calls. Note that $0 \le F_i$, $F_r \le 1$.

$$> q_t = q_w + q_r + q_i + q_s, q_{ice} = q_i + q_s \implies F_i = q_{ice}/q_t, F_r = q_r/(q_w + q_r)$$

27

Size of "snow" a function of temperature

Zavisa Janjic

Observed size distributions of ice as functions of temperature, fit to (M-P) exponential spectra as

 $N(D)=N_0exp(-\lambda \cdot D),$

 N_0 is the intercept, λ is the slope, & $[D] = \lambda^{-1}$ is the mean diameter

HHHP (Washington state)
 SMPC (California)
 GM (California)
 PLATT (multiple locations)
 AWSE (Australia)
 YL (China)
 B, M (Europe)

Adjust [D] so that $0.1L^{-1} \le N_s \le 20L^{-1}$

return to overview WRF NMM, August 2006 28

Other Features of Microphysics

- Discrimination between cloud ice and "snow"
 - Assume 50 μ m size cloud ice, no fall speeds
 - No cloud ice if T>0°C (melting) \Rightarrow only "snow"
 - $N_s = 0.2 \cdot N_i$ ($N_s = \text{snow } \# \text{ conc}$, $N_i = \text{cloud ice } \# \text{ conc}$)
 - $N_s = 0.1 \cdot N_i$ if above ice saturation & $-8^{\circ}C < T < -3^{\circ}C$
- Variable rime density ⇒ assumes accreted liquid water fills air holes of ice lattice w/o changing volume
 - "Rime Factor" (3D array) $\implies RF = \frac{TotalGrowth}{DepositionalGrowth}$
- Efficient look-up tables store solutions for:
 - Various particle moments (ventilation, accretion, mass, precipitation rate) at 1 μm resolution
 - Composite rain & ice fall speed relationships
 - Increase in fall speed of rimed ice (Böhm, 1989)