Setting Up & Running the WRF Standard Initialization

Paula McCaslin

John Smart, Brent Shaw and Matt Pyle

NOAA / Earth Systems Research Laboratory

August 2006

- SI Capabilities
- Source Code
- System Requirements
- Install Software
- Configure Domains
- Prepare and Interpolate Data
- Initialize the WRF Model
- Summary

The WRF modeling system includes 2 dynamic cores:

- Advanced Research WRF (ARW) developed by NCAR/MMM (formerly referred to as the Eulerian Mass core)
- Nonhydrostatic Mesoscale Model (NMM) developed by NOAA/NCEP

Each dynamic core currently has a separate SI package and graphical user interface (GUI)

• Options unique to each package are noted in this presentation

- <u>SI Capabilities</u>
- Source Code
- System Requirements
- Install Software
- Configure Domains
- Prepare and Interpolate Data
- Initialize the WRF Model
- Summary

SI Capabilities

- Three steps in preparing data for WRF:
- 1. Define domain and nest domains
- 2. Create non-time-varying terrain and land state variables files for the domain grids (land use, soil type, etc)
- 3. Down-scale national and global models to this domain for data cases
 - Decode GRIB files to access meteorological data (temp, winds, soil layers, sea-surface temp)
 - Interpolate this data to your domain -- horizontally and vertically, including grid staggering

- SI Capabilities
- Source Code
- System Requirements
- Install Software
- Configure Domains
- Prepare and Interpolate Data
- Initialize the WRF Model
- Summary

Source Code

- SI Source code
 - Available at http://wrfsi.noaa.gov/release
 - ARW v2.1.2 Feb 2006 (wrfsi_v2.1.2.tar.gz)
 - NMM v2.1.2 Feb 2006 (wrfnmm_si_v2.1.2.tar.gz)
 - > 1 GB

Source Code

- SI non-time-varying data files -- Geographical and surface characteristics data files
 - Available at <u>http://wrfsi.noaa.gov/release</u>
 - 6 GB
 - Topography
 - Land use categories (wetland, water, forest)
 - Annual greenness fraction (min and max)
 - Soil temperature, adjusted mean annual
 - Soil type top and bottom layer categories (silt, sand, clay, bedrock):
 - Albedo and Max Snow Albedo
 - Terrain slope index

- SI Capabilities
- Source Code
- System Requirements
- Install Software
- Configure Domains
- Prepare and Interpolate Data
- Initialize the WRF Model
- Summary

System Requirements

- Unix or Linux operating system
 - ARW
 - Routinely built on IBM AIX, Intel-Linux, Alpha-Linux at FSL
 - Built on Alpha-True64, AMD Opteron64 and SGI-IRIX at NCAR
 - NMM
 - IBM AIX, Intel-Linux
- FORTRAN 90/95 Compiler
- C Compiler (gcc is preferred)
- make Utility
- NetCDF Libaries
- Perl (and Perl/Tk for GUI)
- NCAR Graphics & Command Language (NCL) optional

- SI Capabilities
- Source Code
- System Requirements
- Install Software
- Configure Domains
- Prepare and Interpolate Data
- Initialize the WRF Model
- Summary

- Installation Overview
- Choose directory location for wrfsi (and its subdirectories, if desired)
- 2. Check compiler options
- 3. Check for, or build, the NetCDF libraries
- 4. Run the install script
- 5. Check for success

1. Choose directories

• All SI directory structures will be located within the wrfsi directory.

• But, any number of the SI directory structures can be located *anywhere* on your system if you simply define them for the installation process.

•For example:

- •Put source code and executables in different dir locations.
- •Write output dir other than to source code dir.
- •Write intermediate data files to a scratch partition dir.
- •Your computer resource has multiple users of the SI, but you only need one set of the 6 GB-sized geography data.

data etc extdata src util graphics gui

wrfsi

~ source code directory ~

SI structure when code is first extracted from the SI tar file, typically a subdirectory of WRF. Note that this dir is called wrfsi_nmm, for the NMM.

~ installation directories ~

SI structure where the compiled binary executables and scripts will be found after running install_wrfsi.pl to build and install.

~ when installation dir differs from wrfsi dir ~

SI structure after installation process where install_wrfsi.pl command-line option --installroot="directory location" other than wrfsi. A user might want to create two builds from a common wrfsi source, for example named si_install_aix and si_install_linux64.

~ templates directory ~

SI structure with subdirectories that have a unique case name (like "Alaska") that also includes a custom-edited wrfsi.nl containing projection information. Can use install_wrfsi.pl command-line option --templates="directory" to define this location.

~ domains directory ~

Directory for a collection of domain subdirectories, called MOAD_DATAROOT. These will contain the domain's data files. Can use install_wrfsi.pl command-line option --dataroot="directory" to define this location.

MOAD_DATAROOT

Directory where a domain's definition files and the wrf input data will be written. You can have multiple MOAD_DATAROOTS but **only one is set at a time**. setenv MOAD_DATAROOT /wrf/wrfsi/domains/Alaska setenv MOAD_DATAROOT /wrf/wrfsi/domains/Japan

~ external output data directory ~

SI structure with subdirectories created that will contain misc output from degribbing process using grib_prep. A location for the intermediate decoded and time-interpolated GRIB files. This directory area supports multiple MOAD_DATAROOTs. Allow at least 2 GB.

wrfsi geog data etc extdata src util graphics gui bin templates domains landuse_30s soiltemp_1deg islope

~ geography data directories ~

SI structure containing geography data subdirectories, landuse_30s, etc. Can use install_wrfsi.pl command-line option --geog_dataroot="directory" to define this location.

2. Check compiler options

- Look for makefile_*.inc.in in dir wrfsi/src/include (where * is the machine on which you are building)
 - makefile_ibm.inc.in, makefile_pc.inc.in, etc
 - script evaluates `uname –m` to find a makefile
- If a makefile does not exist for your machine (OS or compiler),
 - create a new makefile by copying an existing makefile then editing it to your meet your needs
 - Or, you can use install_wrfsi.pl command-line option --machine ="pc" for ia64linux, or x86_64linux
- Check the makefile's selected compiler, compiler options and flag settings for your machine and its OS

3. Check or build the NetCDF libraries and locate Perl

- Locate path to NetCDF
- Set environment var NETCDF = "Directory path to NetCDF"
- Locate your systems' Perl executable (e.g. /usr/bin/perl)
- Can set environment var PATH_TO_PERL = "Directory path to Perl", or use the Perl found on system
- Substitution values before then after running install_wrfsi.pl wrfprep.pl.in: #!@PERL@ wrfprep.pl.in: "@NETCDF@/bin";

wrfprep.pl: #!/bin/perl
wrfprep.pl: "/usr/local/apps/netcdf/bin";

4. Run the install script

- cd "wrfsi"
- Option A) Run install_wrfsi.pl. Let script automatically configure all the SI directory structures.
- Option B) Run install_wrfsi.pl with command line options to configure some (or all) of the SI directory structures: perl install_wrfsi.pl --installroot=/home/WRFV2/si_aix
 - --geog_dataroot=/wrf/geog
 - --path_to_netcdf=/usr/local/netcdf
 - --machine=ibm
 - (machine corresponds to the makefile_{MACH}.inc.in you want to use)
- Option C) Run install_wrfsi.pl after you have set some (or all) of the SI environment variable directory structures. setenv GEOG_DATAROOT /data/geog

4. Run the install script (con't)

- Various ways to define your SI directory structure:
 - Option A (default) Option B (command line) Option C (env var)
 - wrfsi/ --source_root=
 - wrfsi/
 - wrfsi/templates/
 - wrfsi/domains/
 - wrfsi/extdata/ --ext_dataroot=
 - wrfsi/extdata/GEOG/ --geog_dataroot=
- config_paths
 - Lists all the SI directory structures
 - Can be used in a later session to redefine SI directory for use with the GUI

--source_root= env SOURCE_ROOT
--installroot= env INSTALLROOT
--templates= env TEMPLATES
--dataroot= env DATAROOT
--ext_dataroot= env EXT_DATAROOT
--geog_dataroot= env GEOG_DATAROOT

Check for Fortran executables

to indicate a successful wrfsi installation after running install_wrfsi.pl.

Check for Perl scripts

to indicate a successful wrfsi installation after running install_wrfsi.pl.

5. Check for a success

- During build status information is written to the screen and to "wrfsi"/make_install.log
- If an executable is missing from bin/ there is a problem
- If NetCDF is not built with the same complier used to build SI, you need to rebuild NetCDF. E.g. if using pgf90 for SI, then NetCDF must be built with the <u>same</u> version of pgf90.
- If compile errors are found try to debug the software for your system, or ask for help from <u>wrfhelp@ucar.edu</u>. Also forward any problems and their solutions, if possible, to <u>wrfhelp@ucar.edu</u>.

Look for src directory

It's used to build an executable in the event that an executable is not found in bin/. (E.g. cd grid for gridgen_model.exe, run 'make' to manually build the desired executable. On success, run 'make install' to move the exe to bin/.)

- SI Capabilities
- Source Code
- System Requirements
- Install Software
- Configure Domains
- Prepare and Interpolate Data
- Initialize the WRF Model
- Summary

- Configuring a Domain Overview
 To Define and localize a domain
- 1. Create both a template and domain directory for your domain
- 2. Copy and edit wrfsi.nl
- 3. Run window_domain_rt.pl
- 4. Check for success

1. Create a template and domain directory for your domain

- Each domain needs a "my-case" subdirectory under templates/ and domains/
 - mkdir TEMPLATES/my-case
 - mkdir DATAROOT/my-case

Principal copy of wrfsi.nl

After installation processes, location of the principal copy of the SI Fortran namelist, wrfsi.nl, will be found in templates/default/wrfsi.nl (and wrfsi/data/static).

2. Copy and edit wrfsi.nl

- cp templates/default/wrfsi.nl to templates/my-case
- chmod –R u+w templates/my_case
- cd templates/my-case

2. Copy and edit wrfsi.nl (con't)

- Edit wrfsi.nl
 - &project_id section (simulation_name and user_desc)
 - &hgridspec section (sets up horizontal domain)
 - XDIM, YDIM = dimension in E-W and N-S direction, respectively
 - MAP_PROJ_NAME =
 - 'lambert', 'mercator', or 'polar' (ARW)
 - 'rotlat' (NMM)
 - MOAD_KNOWN_LAT/LON = center latitude (+ N), longitude (+ E)
 - MOAD_STAND_LATS = true latitude1 (lambert and polar), true latitude for lambert (set to +/- 90 for polar)
 - MOAD_STAND_LONS = orientation longitude
 - MOAD_DELTA_X and Y = grid spacing in the x and y directions
 - in meters (ARW)
 - in radian degrees (NMM)
- We recommend removing all namelist sections and vars that do not differ from those found in templates/default/wrfsi.nl 35

3. Run window_domain_rt.pl

- Script <u>runs</u> gridgen_model.exe
- Check that SI environment vars are configured
- Run INSTALLROOT/etc/window_domain_rt.pl with:
 - -t templates/my-case
 - w wrfsi (ARW), wrfsi.rotlat (NMM)
 - Optional:
 - -s, -i, -d flags all override the environment vars, if necessary
 - -c removes the directories log, siprd, static, and cdl. (When omitting -c only directories static and cdl are rewritten.)
- Example command line:
 - perl window_domain_rt.pl -w wrfsi -t templates/"my-case"

4. Check for success

'window_domain_rt.pl' will result in either

<u>SUCCESS</u>:

"window_domain_rt complete"

failure:

"Lines with error found in localize_domain.log"

" \rightarrow localization incomplete \leftarrow "

"window_domain_rt incomplete"

 Diagnostic print statements are written to log file MOAD_DATAROOT/log/localize_domain.log

4. Check for success (con't)

- Common Error conditions:
 - Geography path is not set properly
 - Not enough geog tiles to cover your domain (esp. true if you get only one or two of the quarter sphere geog tar files)
 - Values in wrfsi.nl may not be set properly
 - Note: on an error "window_domain_rt.pl" will create MOAD_DATAROOT/static_err for you to evaluate
- The existence of a static file indicates success:
 - Check for MOAD_DATAROOT/static/static.wrfsi.d01 (ARW)
 - Check for MOAD_DATAROOT/static/static.wrfsi.rotlat (NMM)
 - Both are netCDF files that can be viewed with ncdump or ncBrowse utility

4. Check for success (con't)

- (Optional) generate NCL gmeta images
 - setenv NCARG_ROOT /usr/local/ncarg
 - setenv NCL_COMMAND \$NCARG_ROOT/bin/ncl
 - Or, see wrfsi.noaa.gov/gui/faq_ncl
 - cd INSTALLROOT/graphics/ncl
 - generate_images.pl -domain=/wrfsi/domains/Alaska
 - idt /wrfsi/domains/Alaska/static/meta.d01.ncgm

4. Check for success (con't)

- SI Capabilities
- Source Code
- System Requirements
- Install the Software
- Configure Domains
- Prepare Data
- Interpolate Data
- Initialize the Model
- Summary

Prepare Data

- Prepare Data Overview
 Decode GRIB files to acquire meteorological data
- 1. Locate GRIB data and Vtables
- 2. Configure grib_prep
- 3. Run grib_prep
- 4. Did code run properly?

Prepare Data

1. Locate GRIB data and Vtables

- Data
 - Acquire time-varying meteorological data for WRF's initial and lateral boundary conditions
 - Ensure GRIB data is available in the specified directory, for requested time intervals
- Recognized GRIB file naming conventions are:
 - FSL: yyjjjhhmmffff
 - NCEP: ???.ThhZ.????ff.????
 - NCEP: ???_yymmdd_hh_ff
 - And others
- If your files do not conform to these naming conventions, use -f with the first several characters of the filename (-f avn2004)
- Otherwise, the grib_prep script will assume every file is a possible match

GRIB Vtable

A variable table file containing information to extract model data from a GRIB file to initialize WRF.

Prepare Data

1. Locate GRIB data and Vtables (con't)

- Decoding GRIB
 - A Vtable (variable table) file contains information to extract model data from a GRIB file to initialize WRF
 - Vtable.GFS, Vtable.ETA, etc. are provided
 - Contains a list of variables and their levels based on standard GRIB codes; e.g. 11 is temp, 1 is surface level, thus parameter is skin temperature, TSK
 - Confirm that there is a Vtable for your selected GRIB data file available in extdata/static/Vtable.{model} where model is, e.g. GFS or RUC40
 - Easy to create a Vtable."newGRIBsource" (depending on model) by copying an existing Vtable

grib_prep namelist

Edit grib_prep.nl for grib_prep.pl to locate and decode GRIB files.

Prepare Data

2. grib_prep configuration

- Edit EXT_DATAROOT/static/grib_prep.nl
 - &filetimespec
 - Set start and stop times
 - For real-time runs these values would be set automatically
 - &gpinput_defs
 - Set Vtable name, frequency of grid receipt time, typical time delay (in hours) after cycle time

```
SRCNAME = 'GFS', 'ETA'
SRCVTAB = 'GFS', 'ETA'
SRCPATH ='/data/grib/gfs/0p5deg', (1.0 or 0.5 deg res, FNL anal data)
'/data/grib/40km_eta'
SRCCYCLE = 3, 3
SRCDELAY = 1, 0
```

Prepare Data

3. Run grib_prep.pl

- grib_prep.pl <u>manages</u> the time-series of data to process
- grib_prep.pl <u>runs</u> the Fortran executable grib_prep.exe which loads the Fortran namelist EXT_DATAROOT/static/grib_prep.nl setting all the necessary filenames and values
- grib_prep.exe <u>decodes</u>, <u>extracts</u> and <u>time interpolates</u> GRIB model parameters
- Output is written to EXT_DATAROOT/extprd
- Log files are written to EXT_DATAROOT/log
- While files are being created they are written to EXT_DATAROOT/work/GFS (or other source name)

• Run

INSTALLROOT/etc/grib_prep.pl -s 200508241200 -I 12 -t 6 GFS and INSTALLROOT/etc/grib_prep.pl -help (for command options)

Look for intermediate data files

in extdata/extprd to indicate successfully running grib_prep.pl.

Diagnostic log files

Evaluate grib_prep's gp_* log file to help determine what was needed for GRIB data.

- SI Capabilities
- Source Code
- System Requirements
- Install the Software
- Configure Domains
- Prepare Data
- Interpolate Data
- Initialize the Model
- Summary

- Interpolate Data Overview
 Interpolate data to your domain
- 1. Configure wrfprep
- 2. Confirm set up
- 3. Run wrfprep
- 4. Did code run properly?
- 5. Check the output

Principal wrfprep namelist

Edit wrfsi.nl for wrfprep.pl to locate and process your extracted GRIB data.

1. wrfprep configuration

- Edit MOAD_DATAROOT/my-case/static/wrfsi.nl
- &interp_control
 - PTOP_PA: Top pressure level to consider from input data
 - HINTERP_METHOD and LSM_HINTERP_METHOD
 - 0 = nearest neighbor (not recommended for HINTERP_METHOD)
 - 1 = 4-point linear
 - 2 = 16-point quadratic
 - INIT_ROOT,
 - LBC_ROOT, and
 - LSM_ROOT: Model source prefixes (e.g. ETA:) of binary data files in EXT_DATAROOT/extprd to use for dynamic data (E.g. to run with ETA model and SST for LSM set
 - INIT_ROOT='ETA', LBC_ROOT='ETA' and LSM_ROOT='SST')

1. wrfprep configuration (con't)

- LEVELS: List of "full" vertical levels
 - bottom to top of atmosphere
 - range from 1.0 0.0
- OUTPUT_COORD: vertical coordinate
 - 'ETAP' mass version (ARW)
 - 'NMMH' hybrid vertical coordinate (NMM)
- ARW nests
 - NUM_ACTIVE_SUBNESTS=3 (default=0, range 0 to N nests)
 - ACTIVE_SUBNESTS=2,3,5 (list of subnests to process)
- Its recommended to leave all other settings as they are

2. Confirm set up

- Ensure domain configuration step has been successfully completed
- Ensure wrfsi.nl has the correct data path values
- Are INSTALLROOT and MOAD_DATAROOT path values set

Running

3. Run wrfprep.pl

- wrfprep.pl <u>uses</u> values set in the wrfsi.nl <u>&interp_controls</u> to locate and process data
- wrfprep.pl <u>runs</u> the Fortran executables: hinterp.exe and vinterp.exe
- hinterp.exe and vinterp.exe <u>interpolate</u> the extracted GRIB model parameters to fit the user defined domain
- Output files are written to MOAD_DATAROOT/siprd
- Log files are written to MOAD_DATAROOT/log for the hinterp and vinterp runs
- Run

INSTALLROOT/etc/wrfprep.pl -s 200508241200 -f 12 and INSTALLROOT/etc/wrfprep.pl -help (for command options)

4. Did code run properly?

- Frequency of output files is set in &filetimespec in wrfsi.nl
- If files are not present, check the diagnostic logs to determine what is needed. Then, consider rerunning wrfprep.pl with time resolution flags.
 - E.g. -o -2 (offset time of previous 2 hrs for a real-time process)

5. Checking the output

- Use bin/siscan to dump the file contents
 - siscan {file}
- "wrfsi"/util IDL routines read the hinterp and vinterp output (ARW)

Other Notes

- Executables can be run without the use of any scripts by simply setting MOAD_DATAROOT environment var and ensuring the namelists are correct
- Consider using the WRFSI GUI to accomplish all of the SI processes
- See wrfsi.noaa.gov for additional SI and GUI information

- SI Capabilities
- Source Code
- System Requirements
- Install Software
- Configure Domains
- Prepare Data
- Interpolate Data
- Initialize the WRF Model
- Summary

Initialize the WRF Model

- Edit the WRF namelist.input file to make it consistent with the WRFSI domain configuration
 - ztop, dx, dy, io_form, etc
 - Or, use the -r option with wrfprep.pl to automatically edit namelist.input and run real.exe, only if wrfsi is a subdirectory of WRF
- Run the WRF real routine using the WRFSI output files
 - Run real.exe using the wrf_input.* as input (ARW)
 - Run real_nmm.exe using wrf_input_nmm.* (NMM)
- You can then run the model!
- See Initialization of Real presentation for more details.

- SI Capabilities
- Source Code
- System Requirements
- Install Software
- Configure Domains
- Prepare and Interpolate Data
- Initialize the WRF Model
- <u>Summary</u>

Summary

- Setting up and running the WRFSI is done by:
- 1) Building the software
- 2) Configuring your domain
 - Domain configuration is easy with the use of templates and localization scripts
- 3) Running the grib_prep.pl and wrfprep.pl scripts
- The SI system is flexible enough to run each component separately
- NOAA development of SI is complete and operational.
- NCAR development will optimize and parallelize several components of the SI package with long-term plans to unify the SI package for the two dynamic cores.
- Bug fixes and minor enhancements will be done as resources permit
- wrfhelp@ucar.edu welcomes feedback, bug reports, etc.

Setting up and Running the SI GUI

Overview

- 1. Its recommend that your sys admin install Perl/Tk on your system
- To build the SI GUI: when installing SI answer "Yes" at the command prompt "Do you want to install the SI GUI?"
 - If Perl/Tk is not found, then the install script tries to build this
- 3. To run the GUI use INSTALLROOT/wrf_tools
- 4. A GUI User's Guide is available, see wrfsi.noaa.gov/gui
- 5. A log file is written to /tmp/wrf_tools.log (by default)
- 6. For help with the GUI, see <u>wrfsi.noaa.gov/gui/faq</u> or contact <u>wrfhelp@ucar.edu</u> wrfsi

data etc extdata src util graphics gui bin templates domains