How to SET UP and RUN WRF-NMM

Meral Demirtas

National Center for Atmospheric Research (NCAR) The Developmental Testbed Center (DTC)

8th August, 2006

Outline

- How to get, configure, compile and run WRF-NMM code?
- Input and output files
- WRF-NMM namelist
- Check output

How to get, configure and compile WRF-NMM?

• Get WRF source code from

http://www.dtcenter.org/wrf-nmm/users/downloads/index.php

- The WRF-NMM core is given inside: *wrfv2.1.2.tar.gz*
- After gunzip and untar, should see a directory WRFV2/
- cd to WRFV2/ directory

Makefile	Top-level makefile
README	General information about WRF code
README.NMM	NMM specific information
README_test_cases	Explanation of the test cases for WRF-ARW
Registry/	Directory for WRF Registry file
arch/	Directory where compile options are gathered
chem/	Directory for chemistry modules
clean	script to clean created files and executables
compile	script for compiling WRF code
configure	script to configure the configure.wrf file for compile
dyn_em	Directory for WRF-ARW dynamic modules
dyn_exp/	Directory for a 'toy' dynamic core
dyn_nmm/	Directory for WRF-NMM dynamic modules
external/	Directory that contains external packages, such as
	those for IO, time keeping and MPI
frame/	Directory that contains modules for WRF framework
inc/	Directory that contains include files
main/	Directory for main routines, such as wrf.F, and all executables
phys/	Directory for all physics modules
run/	Directory where one may run WRF
share/	Directory that contains mostly modules for WRF mediation layer and WRF I/O
test/	Directory containing sub-directories where one may
	run specific configurations of WRF. test case Only
	nmm real is relevant to WRF-NMM
tools/	Directory that contains tools

How to configure?

Set NETCDF environmental variable:

Example: setenv NETCDF /usr/local/lib32/r4i4

For LINUX, make sure the netCDF library is installed using the same compiler.

Example: setenv NETCDF /usr/local/netcdf-pgi

To configure WRF, type: ./configure

List of Configure Options-1

Choices for LINUX operated machines are:

- 1. PC Linux i486 i586 i686, PGI compiler (Single-threaded, no nesting)
- 2. PC Linux i486 i586 i686, PGI compiler (Single threaded, supports nesting using RSL)
- 3. PC Linux i486 i586 i686, PGI compiler SM-Parallel (OpenMP, no nesting)
- 4. PC Linux i486 i586 i686, PGI compiler SM-Parallel

(OpenMP, supports nesting using RSL without MPI)

5. PC Linux i486 i586 i686, PGI compiler DM-Parallel (RSL, MPICH, support nesting)

6. PC Linux i486 i586 i686, PGI compiler DM-Parallel (RSL_LITE, MPICH, No nesting)

- 7. Intel xeon i686 ia32 Xeon Linux, ifort compiler (Single-threaded, no nesting)
- 8. Intel xeon i686 ia32 Xeon Linux, ifort compiler
- (Single threaded, supports nesting using RSL without MPI)
- 9. Intel xeon i686 ia32 Xeon Linux, ifort compiler (OpenMP)
- 10. Intel xeon i686 ia32 Xeon Linux, ifort compiler SM-Parallel

(OpenMP, supports nesting using RSL without MPI)

11. Intel xeon i686 ia32 Xeon Linux, ifort compiler DM-Parallel (RSL, MPICH, with nesting)

For WRF-NMM V2, it is recommended to select 6.

List of Configure Options-2

Choices for IBM machines are:

- 1. AIX (single-threaded, no nesting)
- 2. AIX SM (OpenMP, no nesting)
- 3. AIX DM-Parallel (RSL_LITE, IBM-MPI, no nesting)
- 4. AIX DM-Parallel (RSL, IBM-MPI, supports nesting)
- 5. AIX DM-Parallel (RSL, IBM-MPI, supports nesting) (PARALLEL HDF5)
- 6. AIX DM-Parallel (RSL_LITE, IBM-MPI, no nesting) (PARALLEL HDF5)
- 7. AIX DM-Parallel/SM-Parallel (RSL, IBM-MPI, OpenMP, supports nesting)
- 8. AIX DM-Parallel (RSL, IBM-MPI, supports nesting, moving nests, experimental!)
- 9. AIX DM-Parallel (RSL, IBM-MPI, MCEL, experimental!)
- 10. AIX DM-Parallel ESMF (RSL, IBM-MPI, ESMF coupling, supports nesting, experimental!)
- 11. AIX DM-Parallel ESMF (RSL, IBM-MPI, ESMF coupling and LogErr, supports nesting, experimental!)
- 12. AIX (Single-threaded, nesting using RSL without MPI)
- 13. AIX (OpenMP, nesting using RSL without MPI)

For WRF-NMM V2, it is recommended to select 3.

How to configure?

- Command will create a file called *configure.wrf*.
 This file can be edited to change compile options, if desired.
- Note also that WRF V2.1.2 compile options are provided for a number of platforms. The *arch/configure.defaults* file can be edited to add a new option.

How to compile?

- First set WRF_NMM_CORE environmental variable to 1: *setenv WRF_NMM_CORE 1*
- Type the following command to compile:

./compile nmm_real

- If the compilation is successful, it will create two executables in the **main**/ directory: *real_nmm.exe* and *wrf.exe*
 - ✓ *real_nmm.exe*: used for WRF-NMM initialization of real data cases.

✓ *wrf.exe*: used for WRF-NMM model integration.

• These executables will be linked to *test/nmm_real* and *run/* directories.

WRFV2/run directory

/run/LANDUSE.TBL /run/ETAMPNEW DATA /run/RRTM_DATA /run/SOILPARM.TBL /run/VEGPARM.TBL /run/tr49t67 /run/tr49t85 /run/tr67t85 /run/namelist.input

Needs to be edited /run/real nmm.exe -> ../main/real nmm.exe /run/wrf.exe -> ../main/wrf.exe

Note that the above listed items are listed also in /test/nmm_real/ directory

- Before running *real_nmm.exe* and *wrf.exe*, edit *namelist.input* file for runtime options.
 (Explained in detail in the "namlist.input" presentation.)
- A complete list of the namelist variables/parameters and their explanations can be found in the WRF-NMM User's Guide (Chapter 5).

How to run *real_nmm.exe*?

- Edit the *namelist.input* file in /WRFV2/test/nmm_real/ (See <u>Description of Namelist Variables</u> document for details.)
- 2. Make sure the below listed executables and files are linked to the working-directory.

/WRFV2/run/: namelist.input, real_nmm.exe, wrf.exe ETAMPNEW_DATA, RRTM_DATA, GENPARM.TBL, LANDUSE.TBL, SOILPARM.TBL, VEGPARM.TBL, gribmap.txt, tr49t67, tr49t85, tr67t85

Give also link to: wrf_real_input_nm* (WRF-NMM SI results.)

How to run *real_nmm.exe*?

3. Depending on the operating system used, the following commands can be issued to run *real_nmm.exe* in the working directory:

On LINUX-MPI systems, the command is: *mpirun -np n real_nmm.exe*

where "n" defines the number of processors to use. For single processor use 1.

<u>On IBM systems, the command is:</u> *poe real_nmm.exe*

For interactive runs on IBMs, the command is:

poe real_nmm.exe -rmpool 1 -procs n

where "*n*" stands for number of processor (CPUs) to be used.

4. To see whether the run is successful: *tail rsl.out.0000* Search for: "SUCCESS COMPLETE REAL_NMM INIT"

5. If the *real_nmm.exe* run is successful, the following files should be found in the working-directory:

wrfinput_d01 wrfbdy_d01 (Initial conditions, single time level data) (Boundary conditions data for multiple time steps)

How to run *wrf.exe*?

1. Depending on the operating system used, the following commands can be issued to run *wrf.exe* in the working directory:

On LINUX-MPI systems, the command is:

mpirun -np n wrf.exe

where "**n**" defines the number of processors to use. For single processor, use 1.

<u>On IBM systems, the command is:</u>

poe wrf.exe

For interactive runs on IBMs, the command is:

poe real_wrf.exe -rmpool 1 -procs n

where "*n*" stands for number of processor (CPUs) to be used.

2. To see whether the run is successful: *tail rsl.out.0000* Search for: "SUCCESS COMPLETE WRF"

3. If the *wrf.exe* run is successful, the following files should be found in the working-directory:

wrfout_d01_yyyy-mm-dd_hh:mm:ss

For example, if the model is started at 0000 UTC, 23 January 2005, then the first output file should be:

wrfout_d01_2005-01-23_00:00:00

4. It is possible to check the times written to the output file by typing: *ncdump -v Times wrfout_d01-2005-01-23_00:00:00*

Output from an *mpirun*

The standard-out and error will go into the following files for MPI runs: *domain-deposition info*

rsl.out.0000rsl.error.0000rsl.out.0001rsl.error.0001rsl.out.0002rsl.error.0002rsl.out.0003rsl.error.0003There are one pair of files for each running

processor.

A Note for Registry.NMM

Registry.NMM has been modified to include parameter definitions and units. This version is not in the current release, but it shall be part of the next coming release (by September 2006?).

This file can be found in the Tutorial package: *WRFV2/Registry/Registry.NMM_with_notes*

Acknowledge: Tom Black (NOAA/NCEP/EMC)

• Acknowledgements:

Thanks to earlier presentations of NCAR/MMM Division (Wei Wang), for providing excellent starting point for this talk.

Dusan Jovic's (NOAA/NCEP/EMC) help during my work at NCEP and kind support received from John Michalakes (NCAR/MMM) and Dave Gill (NCAR/MMM) to get WRF-NMM run on my LINUXmachine are greatly appreciated!