NAMELIST.INPUT

Meral Demirtas

National Center for Atmospheric Research (NCAR) The Developmental Testbed Center (DTC)

8th August, 2006

Outline

- Why do we need a namelist?
- Sections of *namelist.input*:
 - time_control
 - domains
 - physics
 - dynamics
 - bc_control
 - namelist_quilt
- An example from the test case *namelist.input* file

Why do we need namelist?

The *namelist.input* file helps users to design their model run.

- Before running *real_nmm.exe* and *wrf.exe*, edit *namelist.input* file for runtime options.
- The most up-to-dated namelist.input instructions are given in the WRF-NMM User's Guide (Chapter 5)

&time_control

• time_control:

(It will be explained in detail during "Initialization with Real Data" presentation by Matthew Pyle.)

• **io_form_history/restart/input/boundary:** IO format options

1. binary

- 2. netCDF (recommended option)
- 4. PHDF5
- 5. Grib-1

• debug_level:

0. for standard runs, no debugging.

1. netcdf error messages about missing fields.

50,100,200,300 values give increasing prints.

Large values trace the job's progress through physics and time steps.

&domains

- time_step, time_step_fract_num, time_step_fract_den,max_dom, s_we, e_we,s_sn, e_sn, s_vert, e_vert, dx, dy: As in "Initialization with Real Data" presentation by Matthew Pyle.
- **grid_id (max_dom):** Domain identifier (For WRF-NMM, currently set to 1, since nesting not currently available.)
- **tile_sz_x (max_dom):** Number of points in tile in x direction.
- **tile_sz_y (max_dom):** Number of points in tile in y direction.
- **numtiles (max_dom):** Number of tiles per patch (alternative to tile_sz_x and tile_sz_y).
- **nproc_x (max_dom):** Number of processors in x-direction for decomposition.
- **nproc_y (max_dom):** Number of processors in y-direction for decomposition:
 - * If nproc_y = -1: code will do automatic decomposition.
 - * If nproc_y > 1 for nproc_x and nproc_y: will be used for decomposition.

&physics: Physics options

• *mp_physics*: microphysics

The Ferrier scheme is currently the only microphysics scheme that works with WRF-NMM. Changes will be made in future releases to accommodate the other microphysics options.

- 0. No microphysics
- 1. Kessler scheme
- 2. Lin et al. scheme
- 3. WRF Single-Moment (WSM) 3-class simple ice scheme
- 4. WRF Single-Moment (WSM) 5-class scheme
- 5. Ferrier scheme

(Well tested for WRF-NMM, used operationally at NCEP)

- 6. WSM 6-class graupel scheme
- 8. Thompson et al. scheme
- 98. NCEP 3-class simple ice scheme (to be removed)
- 99. NCEP 5-class scheme (to be removed)

Microphysics related flags

nphs: *This flag is only for WRF-NMM core.* Number of fundamental time steps between calls to turbulence and microphysics. Defined as: *nphs=x/dt*, where *dt* is the time step (s), and *x* is typically in the range of 160s to 180s. (Traditionally it has been an even number, which may be a consequence of portions of horizontal advection only being called every other time step.)

Radiation related flags

ra_lw_physics: longwave radiation

 RRTM scheme: (Preliminary testing for WRF-NMM)

 99. GFDL scheme (Schwarzkopf and Fels)

 (Well-tested for WRF-NMM, used operationally at NCEP)

• *ra_sw_physics*: shortwave radiation

- 1. Dudhia Scheme
- 2. Goddard Shortwave scheme

99. GFDL Scheme (Lacis and Hansen).

(Well-tested for WRF-NMM, used operationally at NCEP)

- *radt*: Minutes between calls to the Dudhia and Goddard (GSFC) shortwave radiation schemes. Recommend 1 min per km of dx (e.g. 10 minutes for 10 km)
- *nrads: This flag is only for the WRF-NMM core.* Number of fundamental time steps between calls to GFDL shortwave radiation scheme. NCEP's operational setting: "nrads" on the order of "3600/dt". For more detailed results, use "1800/dt".
- *nradl: This flag is only for the WRF-NMM core.* Number of fundamental time steps between calls to GFDL longwave radiation scheme. Note that *nradl* must be set equal to *nrads*.
- *co2tf: This flag is only for the WRF-NMM core.* Controls CO2 input used by the GFDL radiation scheme.
 - 0: Read CO2 functions data from pre-generated file

1: Generate CO2 functions data internally

• *sf_sfclay_physics:* surface layer

No surface-layer scheme
 Monin-Obukhov Similarity scheme
 Janjic Similarity Scheme
 (Well tested for WRF-NMM, used operationally at NCEP)
 NCEP Global Forecasting System (GFS) scheme:

(Tested by NCEP for the WRF-NMM.)

- *sf_surface_physics:* land surface
 - 1. Thermal Diffusion scheme
 - 2. NOAH Land-Surface Model
 - 3. RUC Land-Surface Model

99. NMM Land Surface Scheme (Well tested for WRF-NMM, used operationally at NCEP) num_soil_layers: number of soil layers in land surface model

4. For NMM Land Surface Model (Well-tested for WRF-NMM, used operationally at NCEP)

5. Thermal diffusion scheme

6. RUC Land Surface Model

- *bl_pbl_physics:* planetary boundary layer
 - 1. Yonsei University scheme (YSU) (Preliminary testing for WRF-NMM)
 - 2. Mellor-Yamada-Janjic Scheme (Well-tested for WRF-NMM, used operationally at NCEP)
 - 3. NCEP Global Forecast System scheme (Tested by NCEP for WRF-NMM)
 - 99. MRF scheme

Flags related with cloud parameterization

- *cu_physics*: cumulus parameterization
 - 0. No cumulus parameterization. (Tested for WRF-NMM)
 - 1. Kain-Fritsch scheme: (Preliminary testing for the NMM)
 - 2. Betts-Miller-Janjic scheme (Well tested for WRF-NMM, used operationally at NCEP)
 - 3. Grell-Devenyi ensemble scheme
 - 4. Simplified Arakawa-Schubert scheme (Well tested for WRF-NMM by NCEP)
- *ncnvc: This flag is only for WRF-NMM core*. Number of fundamental time steps between calls to convection.
 Note that "ncnvc" should be set equal to "nphs".

• *isfflx:* heat and moisture fluxes from the surface for the Monin-Obukhov scheme (sf_sfclay_physics=1)

0. No flux from the surface

1. With fluxes from the surface

• *ifsnow:* snow-cover effects for Thermal Diffusion scheme (sf_surface_physics=1)

0. No snow-cover effect

1. With snow-cover effect

• *icloud:* cloud effect to the optical depth in the Dudhia shortwave and RRTM longwave radiation schemes

0. No cloud effect

1. With cloud effect

- *mp_zero_out:* For non-zero mp_physics options, to keep water vapor positive, and to set the other moisture fields smaller than a threshold value to zero.
 - 0. No action is taken, no adjustment to any moist field. (Conservation maintained.) *For WRF-NMM*, *mp_zero_out MUST BE set to 0*.
 - 1. All moist arrays, except for Qv, are set to zero if they fall below a critical value. (No conservation)
 - Qv<0 are set to zero, and all other moist arrays that fall below the critical value defined in the flag "mp_zero_out_thresh" are set to zero. (No conservation.)
- *mp_zero_out_thresh:* Critical value for moisture variable threshold, below which moist arrays (except for Qv) are set to zero (unit: kg/kg). Default value is "1.e-8".

&dynamics: Dynamics options

dyn_opt: 4. WRF-NMM dynamics

&bc_control: Boundary control

spec_bdy_width: Total number of rows for specified boundary value nudging. *It must be set to 1 for WRF-NMM.*

& *namelist_quilt:* Specifies asynchronized I/O for MPI applications.

nio_tasks_per_group: Default value is 0, means no quilting; value > 0 quilting I/O

nio_groups: Default is 1, do NOT change.

A summary of physics options that are well-tested for WRF-NMM

Microphysics (mp_physics)	Ferrier scheme (5)
Longwave Radiation (ra_lw_physics)	GFDL scheme (99)
Shortwave Radiation (ra_sw_physics)	GFDL scheme (99)
Surface Layer (sf_sfclay_physics)	Janjic Similarity scheme (2)
Land Surface (sf_surface_physics)	NMM Land Surface scheme (99)
Planetary Boundary Layer (bl_pbl_physics)	Mellor-Yamada-Janjic scheme (2)
Cumulus Parameterization (cu_physics)	Betts-Miller-Janjic scheme (2)

WRF-ARW SPECIFIC NAMELIST FLAGS

- bldt, cudt
- rk_ord, diff_opt, km_opt, damp_opt, zdamp, dampcoef, khdif, kvdif, mix_cr_len, smdiv, emdiv, epssm, time_step_sound
- spec_zone, relax_zone, specified, periodic_x, symmetric_xs, symmetric_x, open_xs, open_xe, periodic_y, symmetric_ys, symmetric_ye, open_ys, open_ye, nested

AN EXAMPLE FROM TEST CASE NAMELIST.INPUT

• **&time_control** : Specifies the length of the model forecast.

run_days = 1. run_hours = 0, run_minutes = 0, run_seconds = 0, start_year = 2005, start_month = 01, start_day = 23, start_hour = 00, start_minute = 00, start_second = 00, =2005, end_year end_month = 01,end_day = 24,end_hour = 00.end_minute = 00, = 00.end_second

interval_seconds	= 10800,
history_interval	= 60,
frames_per_outfile	e = 1,
restart	=.false.,
io_form_history	= 2 (for netCDF)
io_form_restart	= 2 (for netCDF)
io_form_input	= 2 (for netCDF)
io_form_boundary	= 2 (for netCDF)
debug_level	= 1 (Shows only netCDF errors)

• & domains : Specifies the model domain.

time_step time_step_fract_num time_step_fract_den max_dom s_we e_we s_sn e_sn s_vert e_vert	= 56, = 1, = 92, = 1,	 (Denominator for fractional time step) (No nesting) Always set to 1 <i>Domain dimension in x direction: xdim+1</i> Always set to 1 <i>Domain dimension in y direction: ydim+1</i> Always set to 1 End index in z (vertical) direction (staggered dimension). Note: This parameter refers to
dx	- 09750	full levels including surface and top. 0, <i>Always in degrees</i>
dy grid_id tile_sz_x tile_sz_y		00, Always in degrees 00, Always in degrees
numtiles	= 1,	

• & physics: Specifies physics options.

mp_physics ra_lw_physics ra_sw_physics radt	= 5, = 99, = 99, = 60,	Ferrier GFDL longwave radiation scheme (Fels-Schwarzkopf) GFDL shortwave radiation scheme (Lacis-Hansen)
nrads nradl co2tf	= 108, = 108, = 1,	Note that nrads=nradl
sf_sfclay_physics	= 2,	Janjic scheme
sf_surface_physics	= 99,	NMM Land Surface Model
bl_pbl_physics	= 2,	Mellor-Yamada-Janjic
bldt	= 3,	
nphs	= 6,	
cu_physics	= 2,	Betts-Miller-Janjic scheme
cudt	= 3,	
ncnvc	= 6,	Note that ncnvc=nphs
isfflx	= 0,	
ifsnow	= 0,	
icloud	= 0,	
num_soil_layers	= 4,	NMM Land Surface Model
mp_zero_out	= 0,	

• & dynamics: Specifies dynamics options.

dyn_opt	= 4,	WRF-NMM dynamics
rk_ord	= 3,	This flag is only for WRF-ARW core
diff_opt	= 0,	This flag is only for WRF-ARW core
km_opt	= 1,	This flag is only for WRF-ARW core
damp_opt	= 1,	This flag is only for WRF-ARW core
zdamp	= 5000.,	This flag is only for WRF-ARW core
dampcoef	= 0.01,	This flag is only for WRF-ARW core
khdif	= 0,	This flag is only for WRF-ARW core
kvdif	= 0,	This flag is only for WRF-ARW core
mix_cr_len	= 200.,	This flag is only for WRF-ARW core
smdiv	= 0.1,	This flag is only for WRF-ARW core
emdiv	= 0.01,	This flag is only for WRF-ARW core
epssm	= 0.1,	This flag is only for WRF-ARW core
time_step_sound	= 4,	This flag is only for WRF-ARW core

& bdy_control: Boundary condition control. ۲

spec_bdy_width	= 1,
spec_zone	= 1, - 4
relax_zone specified	= 4, = .true.,
periodic_x	=.false.,
symmetric_xs	= .false., = .false.,
symmetric_xe open_xs	= .false., = .false.,
open_xe	= .false.,
periodic_y	= .false.,
symmetric_ys	= .false., = .false.,
symmetric_ye open_ys	= .false.,
open_ye	= .false.,
nested	=.false.,

Total number of rows for specified boundary value nudging. ALWAYS SET TO 1 for NMM This flag is only for WRF-ARW core This flag is only for WRF-ARW core

& namelist_quilt: Specifies asynchronized I/O for MPI applications. ۲

nio_groups

nio_tasks_per_group = 0, Default value is 0, means no quilting; value > 0 quilting I/O = 1, Default is 1, do NOT change.

Acknowledgements: Thanks to earlier presentations of NCAR/MMM Division (Wei Wang), for providing excellent starting point for this talk.

I would like to also thank Tom Black, Zavisa Janjic, Brad Ferrier (NOAA/NCEP) and Jimy Dudhia (NCAR/MMM) for helping me to understand "namelist parameters"!