Weather Research and Forecasting (WRF) Modeling System

A Brief Overview

Meral Demirtas

National Center for Atmospheric Research (NCAR) Developmental Testbed Center (DTC)

8th August, 2006

Outline

- What is WRF?
- WRF Dynamic Cores
- WRF Modeling System
- WRF Software Design
- What is WRF-NMM?
- WRF-NMM Model Physics

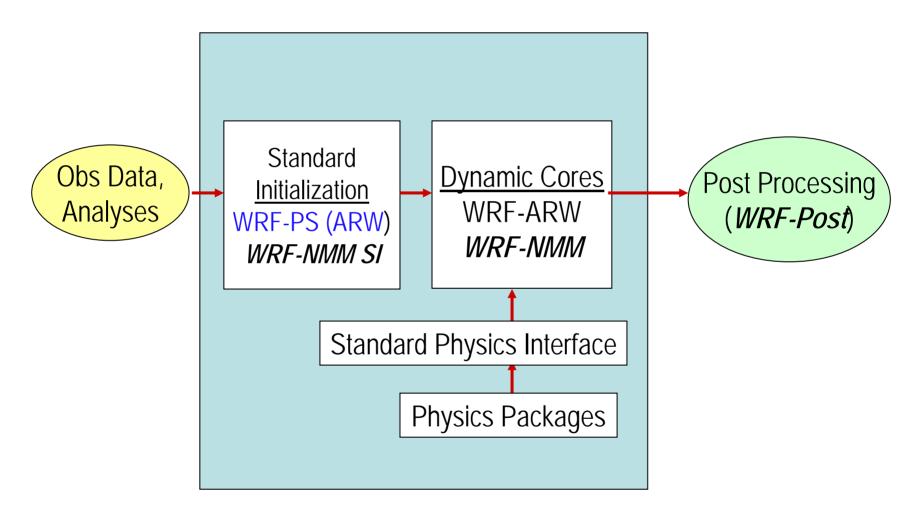
What is WRF?

- WRF: Weather Research and Forecasting Model
- Development led by NCAR/MMM, NOAA/FSL and NOAA/NCEP/EMC with partnerships at AFWA, FAA, NRL and collaborations with universities and other government agencies

WRF Characteristics

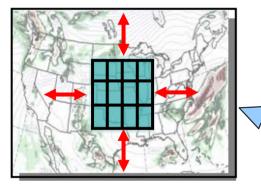
- Includes research and operational models
- Highly modular, single source code with plug-compatible modules,
- State-of-the-art, transportable, and efficient in a massively parallel computing environment,
- Design priority for high-resolution (nonhydrostatic) applications,

WRF Dynamic Cores

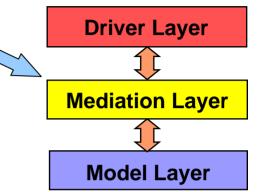

• Advance Research WRF (ARW)

✓ Terrain-following hydrostatic pressure vertical coordinate

- ✓ Arakawa C-grid
- ✓ 3rd order Runge-Kutta split-explicit time differencing, 5th or 6th order differencing for advection
- Conserves mass, momentum, dry entropy, and scalars using flux form prognostic equations
- Non-hydrostatic Meso-Scale Model (NMM)
 - ✓ Terrain-following hybrid (sigma-pressure) vertical coordinate
 - ✓ Arakawa E-grid
 - ✓ Explicit time differencing
 - Conserves mass, kinetic energy, enstrophy and momentum, as well as a number of additional first order and quadratic quantities using 2nd order finite differencing


WRF-NMM dynamics will be presented in detail by Tom Black.

WRF Modeling System


WRF Software Infrastructure

WRF Software Design

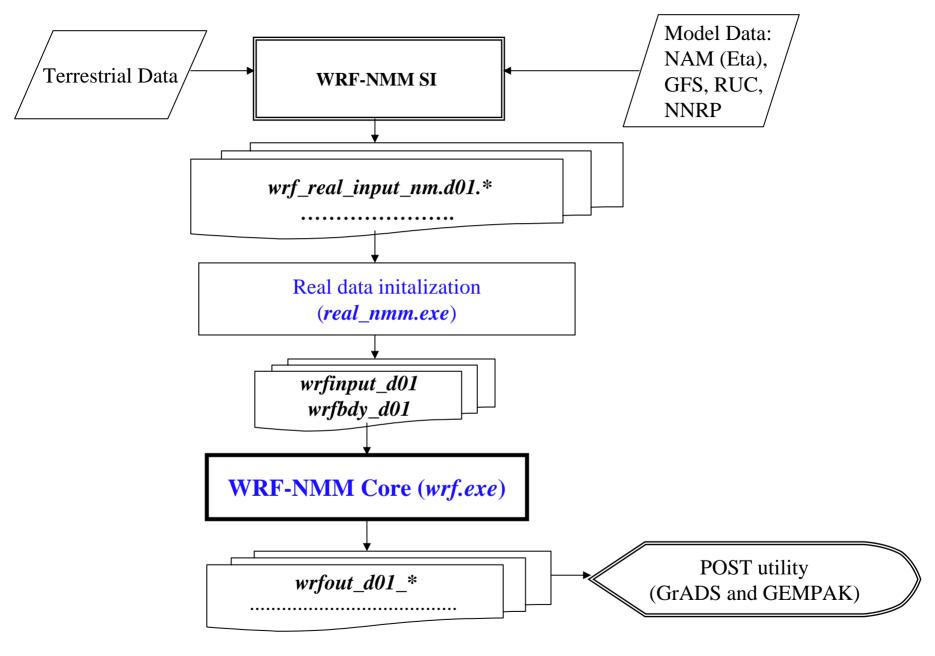
- Modular, hierarchical design
- Plug compatible physics, dynamical cores
- Parallelism on distributed and shared memory processors
- Efficient scaling on foreseeable parallel platforms
- Integration into Earth System Model Framework (ESMF)

WRF-Software will be explained in detail by Dave Gill.

What is WRF-NMM?

- WRF Non-hydrostatic Meso-Scale Model (WRF-NMM) is a large sub-set of WRF. (Dynamical core developed by NOAA/NWS/NCEP/EMC).
- WRF-NMM is a freely available community model.
- WRF-NMM system includes: initialization (WRF-NMM SI), NMM dynamical core and post-processing (WRF Post-Processor and graphic packages) components.
- This tutorial covers all the WRF-NMM components.
- Physics and software framework are shared with WRF-ARW.
- User support for WRF-NMM will be provided by DTC and NCEP.

WRF-NMM Model Physics


- Plug-compatible interface defined for physics modules
- NCEP's operationally used physics options for WRF-NMM:

 Microphysics: 	Ferrier
 Cumulus Convection: 	Betts-Miller-Janjic
 Shortwave Radiation: 	GFDL
 Longwave Radiation: 	GFDL
 Lateral diffusion: 	Smagorinsky
✓ PBL, free atmosphere:	Mellor-Yamada-Janjic
 Surface Layer: 	Janjic Scheme
✓ Land-Surface:	4-layer soil model

Physics section will be given in detail by Jimy Dudhia, Tom Black and Mike Ek.

WRF-NMM Modeling System Components

- WRF-NMM Standard Initialization (WRF-NMM SI)
- WRF-NMM Model
 - An Initialization program for real data (*real_nmm.F*)
 - Numerical integration program (*wrf.F*)
- WRF Post-Processor and Graphics tools

WRF-NMM Flow-Chart

WRF-NMM Standard Initialization (WRF-NMM SI)

- For real-data runs
- Inputs
 - Terrain/land-use/soil texture/albedo
 - Grid location/levels
 - Gridded fields (in GRIB format)
- Output
 - Surface and meteorological fields on WRF grid at various times e.g. wrf_real_input_nm.d01.(date_string)

WRF-NMM SI will be presented in detail by Matthew Pyle.

WRF-NMM SI software package

Functions:

- \checkmark Define simulation domain area
- ✓ Produce terrain, landuse, soil type etc. on the simulation domain ("static" fields)
- ✓ De-grib GRIB files for meteorological data (u, v, T, q, surface pressure, soil data, snow data, sea-surface temperature, etc.)
- ✓ Interpolate meteorological data to WRF model grid (horizontally and vertically)
- \checkmark GUI for running the program

WRF-NMM SI software package will be presented in detail by Paula McCaslin.

An initialization program (*real_nmm.F*) for real-data

- \checkmark Used for model initialization
- ✓ Convert meteorological fields to WRF model variables
- ✓ Provide fields in WRF I/O format
- Inputs
 - WRF namelist.input
 - Standard Initialization output
- Outputs
 - WRF input file (*wrfinput_d01*)
 - WRF boundary file (*wrfbdy_d01*)
- Executable: *real_nmm.exe*

WRF-NMM model initialization will be presented in detail by Matthew Pyle.

Numerical integration program wrf.F

- Inputs
 - ✓ WRF-NMM namelist.input
 - ✓ WRF-NMM input file (*wrfinput_d01*)
 - ✓ WRF-NMM boundary file (*wrfbdy_d01*)
 - ✓ Various physics data files
- Outputs
 - ✓ WRF output files [*wrfout_d01_(time)*]
 - ✓ WRF restart files [*wrfrst_d01_(time)*]
- Executable: *wrf.exe*

WRF-NMM model run will be presented in detail by Meral Demirtas.

WRF Post-Processor (Version 2)

- Processes output from WRF-NMM and WRF-ARW
- De-staggers variables
- Interpolates to pressure levels and user definedgrid
- Outputs in standard GRIB format, which can be read by most graphical packages
- Scripts available for GEMPAK and GrADS visualization packages.

Post-processing tools for WRF-NMM will be presented in detail by Hui-Ya Chuang.

Software Aspect

• WRF-NMM SI

Single-processor job
 Currently tested on LINUX-PCs and IBM

• WRF-NMM

real_nmm.F: can be run as a parallel job <u>using MPI</u>
 WRF-NMM: fully parallelized for 3-D cases, OpenMP, and MPI (or MPICH fort LINUX systems)

Software Aspect

- WRF modeling system software requires the following:
 - FORTRAN 90/95 compiler (Preferably PGI for LINUX systems)
 - C compiler
 - Perl
 - netCDF library
 - NCAR Graphics (optional)
 - Public domain *mpich* to run WRF model in MPI

User Support

- Available by email: <u>wrfhelp@ucar.edu</u>
- WRF-NMM Users page:

http://www.dtcenter.org/wrf-nmm/users/

- WRF software download
- Release updates
- Documentation
- Copies of tutorial presentations
- Links to useful sites

Tutorial Schedule

Lectures for WRF-NMM: Tue., Wed., Thu., Fri Practical Sessions for WRF-NMM: Wed., Thu., Fri

Acknowledgements: Thanks to earlier presentations of NCAR/MMM Division, for providing excellent starting point for this talk and others to come during this Tutorial.