WRF-NMM: Initialization with Real Data

Matthew Pyle 8 August 2006

<u>Overview</u>

- Where does "real" fit into the WRF-NMM system?
- Brief code description
- Running "real": The namelist, input and output files

Where does "real" fit?

- The SI by itself **DOES NOT** generate the files needed to run the WRF model.
- The "real" program reads the SI output, and creates WRF dynamical core specific variables that are output to an initial condition (*wrfinput_d01*) and lateral boundary condition (*wrfbdy_d01*) file.
- Built alongside the WRF forecast model, it utilizes the WRF software infrastructure.

Code description

- The unique "real" functionality is largely contained in ./main/real_nmm.F and ./dyn_nmm/module_initialize_real.F.
- However, the program utilizes code shared with the forecast model for common tasks such as reading and writing data.

Code description (cont.)

- In broad terms, the code (main program and subroutines) within real_nmm.F:
 - Does time looping and makes the calls that read in the SI output files.
 - Calls init_domain (next slide)
 - Calls start_domain, which initializes variables, allocates arrays, and performs other assorted tasks.
 - Computes boundary tendencies.
 - Makes calls to write the output *wrfinput_d01* and *wrfbdy_d01* files.

Code description (cont.)

- The module_initialize_real code (init_domain):
 - Interpolates input soil data in the vertical, and generates the appropriate surface fields for the selected physics options.
 - Strives to maintain consistency between various land surface characteristics (land/sea mask, sea ice, veg/soil classes, skin temperature, albedo, …)
 - Generates a variety of fields used by the model dynamics – many depend on the model timestep, and thus must be defined within real.

Namelist items

• The same *namelist.input* file used to run the WRF model is also used when running "real". It is NOT the same as the namelist used with the SI code.

• Will attempt to limit the namelist discussion here to items directly relevant to "real".

&time_control

run_days	= 2,
run_hours	= 0,
run_minutes	= 0,
run_seconds	= 0,

Specifies the length of the model forecast. Alternately, these "run_" specifications can be set to zero, allowing the "start_" and "end_" definitions (next slide) to control forecast length.

&time_control (cont.)

start_year		= 2005,	
start_month		= 08,	
start_day		= 24,	
start_hour		= 12,	The "real" job will utilize SI
start_minute	= 00,		output available between the
start_second	= 00,		start and end times when
end_year end_month end_day end_hour end_minute	= 00,	= 2005, = 08, = 26, = 12,	generating the lateral boundary condition (LBC) file.
end_second	= 00, IS	= 10800,	interval_seconds : specifies frequency of LBC updates, and should match frequency at which SI output was produced.

&domains

time_step	= 26,
time_step_fract_num	= 2,
time_step_fract_den	= 3,
max_dom	= 1,

Defines model time step in seconds (including a fractional component). Here defined as 26 2/3 s.

WRF-NMM model time step is generally about 2.25 x (grid spacing in km), or about 330 x (angular grid spacing) and is selected to obtain an integer number of time steps per hour

max_dom should remain one (no nesting here yet).

&domains (cont.)

s_we	= 1,	"we": west-east dimension
e_we	= 361,	" sn ": north-south dimension
s_sn	= 1,	"vert": vertical dimension
e_sn	= 576,	All start (s) at 1 and the end
s_vert	= 1,	(e_) dimensions for "we" and
e_vert	= 61,	"sn" are ONE GREATER than
		their specification in the WRF-
dx	= .087603,	As in the SI namelist, the dx and dy specifications are in
dv	= .075047.	
	, , ,	consistent between the SI
		and model namelists!

Running real_nmm.exe

Assuming that:

- The WRF source code has been successfully downloaded and compiled.

- WRF-NMM SI output exists for the domain and forecast period of interest.

- The WRF namelist file has been properly edited.

Running real_nmm.exe (cont.)

- Combine the contents of ./WRFV2/test/nmm_real/ or ./WRFV2/run/ (including *real_nmm.exe* and the *namelist.input* file) and the WRF-NMM SI output files (*wrf_real_input...*) into a single run directory.
- *real_nmm.exe* can be run serially or using distributed memory parallelism (choice determined by how the source code is compiled).
- "real" is memory intensive, particularly for large domains. Running on multiple CPUs may provide access to more memory, which enables runs over larger-dimension domains.

Running real_nmm.exe (cont.)

- About how much memory is used? A non-representative sample of domains:
 - 360 x 575 x 60 (~ 4.8 GB on single proc, ~510 MB/proc when distributed over 12 processors)
 - 530 x 851 x 35 (~ 6.4 GB)
 - 110 x 181 x 35 (~ 314 MB)

<u>Running real_nmm.exe (cont.)</u>

- Run as a parallel job:
 - mpirun –np # real_nmm.exe
 - poe real_nmm.exe
 - Log file(s) in rsl.out.* and rsl.error.* (one pair of rsl.* files for each procesor)
- Run serially:
 - ./real_nmm.exe > real.log 2>&1 (sh/ksh)
 - ./real_nmm.exe >& real.log (csh)

Running real_nmm.exe (cont.)

- If all goes well, will end up with non-zero length wrfinput_d01 and wrfbdy_d01 output files.
- Can examine these files (assuming they are netCDF) with ncdump, ncBrowse, or a similar netCDF tool.
- If real_nmm.exe runs to completion, the line "real_nmm: SUCCESS COMPLETE REAL_NMM INIT" will be near the end of the log file.

The WPS future:

- The "real" job isn't immune from the preprocessing changes coming due to the advent of the so-called WPS.
- The vertical interpolation functionality will become part of "real"; this change is the primary piece of work that needs to be done for the WRF-NMM to become ready for the WPS.

<u>Acknowledgements</u>

- Some ideas for this talk came from Dave Gill's ARW Tutorial slides.
- Dave also provided guidance in the initial development/port of a "real" capability into the WRF-NMM.