

 WRF-NMM Tutorial 2-1

User's Guide for the NMM Core of the
Weather Research and Forecast (WRF)

Modeling System Version 2.1

Chapter 2: Software Installation

Table of Contents
• Introduction
• Required Compilers and Scripting Languages
• Required/Optional Libraries to Download
• Post-Processing Utilities
• UNIX Environment Settings
• Building the WRF System for NMM Code
• Building the WRF-SI Code

Introduction

The WRF modeling system software installation is fairly straightforward on the
platforms. The package is mostly self-contained, meaning that WRF requires no external
libraries (such as for FFTs or various linear algebra solvers). The one required external
package is the netCDF library, which is one of the supported I/O API packages. The
netCDF libraries or source code are available from the Unidata homepage at
http://www.unidata.ucar.edu (select DOWNLOADS, registration required).

The WRF-NMM core has been successfully ported to a number of Unix-based machines.
WRF developers do not have access to all of them and must rely on outside users and
vendors to supply the required configuration information for the compiler and loader
options. Below is a list of the supported combinations of hardware and software for
WRF-NMM.

Vendor Hardware O.S. Compiler

IBM SP Power-x AIX vendor

SGI MIPS IRIX vendor

HP/COMPAQ/DEC Alpha Tru64 vendor

Various IA-32 LINUX PGI

 WRF-NMM Tutorial 2-2

Various Opteron LINUX PGI

The WRF-NMM code runs on single processor machines (if number of processors for
“mpirun” is set to 1), shared-memory machines (that use the OpenMP API), distributed
memory machines (with the appropriate MPI libraries), and on distributed clusters
(utilizing both OpenMP and MPI). Porting to systems that uses the Intel compiler is
currently under development.

The WRF-NMM SI code also runs on the systems listed above.

Required Compilers and Scripting Languages

The WRF model is written in FORTRAN (what many refer to as FORTRAN 90). The
software layers, RSL and RSL-LITE, -which sit between WRF and the MPI interface- are
written in C. Ancillary programs that perform file parsing and file construction, both of
which are required for default building of the WRF modeling code, are written in C.
Additionally, the WRF build mechanism uses several scripting languages: including perl
(to handle various tasks such as the code browser designed by Brian Fiedler), C-shell and
Bourne shell. The traditional UNIX text/file processing utilities are used: make, M4, sed,
and awk. See Chapter 6: WRF Software (Required Software) for a more detailed listing
of the necessary pieces for the WRF build.

The WRF-NMM SI is mostly written in FORTRAN 77 and FORTRAN 90 with a few C
routines. Perl scripts are used to run the programs, and Perl/Tk is used for GUI.

UNIX make is used in building all executables.

Required/Optional Libraries to Download
The only library that is almost always required is the netCDF package from Unidata
(login > Downloads > NetCDF). The WRF post-processing packages assume that the
data from the WRF model uses the netCDF libraries. To execute netcdf commands, such
as ncdump and ncgen, /path-to-netcdf/netcdf/bin may also need to be added to the user’s
path.

Hint: When compiling WRF codes on a Linux system using the PGI compiler, make sure
the netCDF library is also installed using the PGI compiler.

A version of MPI is needed when running distributed memory WRF jobs. A version of
mpich can be picked up at (insert web link), but the user may want their system
administrator to install the code. A working installation of MPI is required prior to a build
of WRF using distributed memory. To determine whether MPI is available on your
computer system, try:

which mpif90
which mpicc

 WRF-NMM Tutorial 2-3

which mpirun

If all of these executables are defined, MPI is probably already available. The MPI lib,
include and bin need to be included in the user’s path.

Post-Processing Utilities

The currently supported graphical utilities for the WRF-NMM require first running the
raw output files through the WRF Post-processing package developed by NCEP. This
package interpolates the output from the model’s native grid to standard output levels and
grids, as well as computing some diagnostic fields.

Some characteristics of the WRF Post-Processor are:

• outputs the results in NWS and WMO standard GRIB1 format
• interpolates the forecasts from the model’s native vertical coordinate to

NWS standard output levels (pressure, height, etc.) and computes MSLP.
• computes diagnostic output quantities (e.g. CAPE, helicity, radar

reflectivity, etc.).
• destaggers forecasts.

• GrADS
• interpolates to regular lat/lon grid
• simple to generate publication quality

• GEMPAK
• distributed and supported to user community by UNIDATA
• interpolation to various surfaces, trajectories, hundreds of diagnostic

calculations
• table driven
• interpolates to regular lat/lon grid
• simple to generate publication quality

UNIX Environment Settings
There are only a few WRF-related environmental settings. Most of these settings are not
required, but the user may want to try some of these settings if difficulties are
encountered during the build process. The one required environmental setting when
building the NMM core is WRF_NMM_CORE (see below). In C-shell syntax:

• setenv NETCDF /path-to-netcdf (explicitly define the path to netcdf library and
include directory)

• setenv WRF_NMM_CORE 1 (explicitly defines which model core to build)
• unset limits (especially if you are on a small system)

 WRF-NMM Tutorial 2-4

• setenv MP_STACK_SIZE 64000000 (OpenMP blows through the stack size, set
it large)

• setenv MPICH_F90 f90 (or whatever your FORTRAN compiler may be called.
WRF needs the bin, lib, and include directories)

• setenv OMP_NUM_THREADS n (where n is the number of processors to use.
In systems with OpenMP installed, this is how the number of threads is specified.)

Building the WRF System for the NMM Core
The WRF code has a fairly complicated build mechanism. The package tries to determine
the architecture on which the code is being built, and then presents the user with options
to allow the user to select the preferred build method. For example, on a Linux machine,
it determines whether the machine is 32 or 64 bit, and then prompts the user for the
desired usage of processors (such as serial, shared memory, or distributed memory).

• Get the WRF zipped tar file
• WRFV2.1.1 from http://www.dtcenter.org/wrf-nmm/users
• always get the latest version if you are not trying to continue a pre-existing

project
• unzip and untar the file

• tar -zxvf wrfv2.1.1.tar.gz
• again, always obtain the latest version of the code, 2.1.1 is just used as an

example
• cd WRFV2
• ./configure

Chose one of the options (best to stick with an option recommended for NMM)
• setenv WRF_NMM_CORE 1
• ./compile real_nmm
• ls -ls main/*.exe

• real_nmm.exe, and wrf.exe should appear in this directory listing

Building the WRF-NMM SI Code
The simplest build for WRF-NMM SI code is to use all default directories. Several
configure files are provided in src/include/ directory for various computers. A Perl script,
install_wrfsi.pl in the top directory is used to install the software.

• Get the latest WRF-NMM SI zipped tar file
• wrfsi_nmm_v2.1.tar.gz from http://wrfsi.noaa.gov/release/

• unzip and untar the file
• tar -zxvf wrfsi_v2.1.tar.gz

• cd wrfsi
• set the following environment variable to define where the netCDF library and

include directories are

 WRF-NMM Tutorial 2-5

• setenv NETCDF /path-to-netcdf
• issue the following command to install - when prompted to answer whether the

GUI should be installed:
• perl install_wrfsi.pl
• output from running the install script can be found in make_install.log

• ls -l bin/ (if environment variable INSTALLROOT is not set) or ls -l
$INSTALLROOT/bin (if environment variable INSTALLROOT is set)

More details can be found in Chapter 3.

