
 WRF-NMM Tutorial 6-1

User’s Guide for the NMM Core of the
Weather Research and Forecast (WRF) Modeling

System Version 2.1

Chapter 6: WRF Software

Table of Contents

• WRF Build Mechanism
• Registry
• I/O Applications Program Interface (I/O API)
• Timekeeping
• Software Documentation
• Portability and Performance

WRF Build Mechanism

The WRF build mechanism provides a uniform apparatus for configuring and compiling
the WRF model and pre-processors over a range of platforms with a variety of options.
This section describes the components and functioning of the build mechanism. For
information on building the WRF code, see Section 2.

Required software:

The WRF build relies on Perl version 5 or later and a number of UNIX utilities: Csh and
Bourne shell, make, M4, sed, awk, and the uname command. A C compiler is needed to
compile programs and libraries in the tools and external directories. The WRF code itself
is Fortran90. For distributed-memory, MPI and related tools and libraries should be
installed.

Build Mechanism Components:

Directory structure: The directory structure of WRF consists of the top-level directory
plus directories containing files related to the WRF software framework (frame), the
WRF model (dyn_em, dyn_nmm, phys, share), configuration files (arch, Registry),
helper programs (tools), and packages that are distributed with the WRF code (external).

Scripts: The top-level directory contains three user-executable scripts: configure,
compile, and clean. The configure script relies on a Perl script in arch/Config.pl.
Programs: A significant number of WRF lines of code are automatically generated at
compile time. The program that does this is tools/registry and it is distributed as source
code with the WRF model.



 WRF-NMM Tutorial 6-2

Makefiles: The main makefile (input to the UNIX make utility) is in the top-level
directory. There are also makefiles in most of the subdirectories that come with WRF.
Make is called recursively over the directory structure. Make is not used directly to
compile WRF; the compile script is provided for this purpose.

Configuration files: The configure.wrf contains compiler, linker, and other build
settings, as well as rules and macro definitions used by the make utility. Configure.wrf is
included by the Makefiles in most of the WRF source distribution (Makefiles in tools and
external directories do not include configure.wrf). The configure.wrf file in the top-level
directory is generated each time the configure script is invoked. It is also deleted by clean
-a. Thus, configure.wrf is the place to make temporary changes: optimization levels,
compiling with debugging, etc., but permanent changes should be made in
arch/configure.defaults.

The arch/configure.defaults file contains lists of compiler options for all the supported
platforms and configurations. Changes made to this file will be permanent. This file is
used by the configure script to generate a temporary configure.wrf file in the top-level
directory. The arch directory also contains the files preamble and postamble, which the
unchanging parts of the configure.wrf file that is generated by the configure script.

The Registry directory contains files that control many compile-time aspects of the WRF
code (described elsewhere). The files are named Registry.EM (for builds using the
Eulerian Mass core, ARW) and Registry.NMM (for builds using the NMM core). The
configure script copies one of these to Registry/Registry, which is the file that
tools/registry will use as input. The choice of Registry.EM or Registry.NMM depends on
settings to the configure script. Changes to Registry/Registry will be lost; permanent
changes should be made to Registry.EM or Registry.NMM depending on which core is
used.

Environment variables: Certain aspects of the configuration and build are controlled by
environment variables: the non-standard locations of NetCDF libraries or the PERL
command, which dynamic core to compile, machine-specific options (e.g.
OBJECT_MODE on the IBM systems) etc.

In addition to WRF-related environment settings, there may also be settings specific to
particular compilers or libraries. For example, local installations may require setting a
variable like MPICH_F90 to make sure the correct instance of the Fortran 90 compiler is
used by the mpif90 command.

How the WRF build works:

There are two steps in building WRF: configuration and compilation.
Configuration: The configure script configures the model for compilation on the user’s
system. Configure first attempts to locate needed libraries such as NetCDF or HDF and
tools such as Perl. It will check for these in normal places, or will use settings from the



 WRF-NMM Tutorial 6-3

user's shell environment. Configure then calls the UNIX uname command to discover
what platform you are compiling on. It then calls the Perl script arch/Config.pl, which
traverses the list of known machine configurations and displays a list of available options
to the user. The selected set of options is then used to create the configure.wrf file in the
top-level directory. This file may be edited but changes are temporary, since the file will
be overwritten or deleted by the configure script or clean -a.

Compilation: The compile script is used to compile the WRF code after it has been
configured using the configure script, a csh script that performs a number of checks,
constructs an argument list, copies to Registry/Registry the correct Registry.core file for
the core being compiled, and invokes the UNIX make command in the top-level
directory. The core to be compiled is determined from the user’s environment; if no core
is specified in the environment (by setting WRF_CORE_CORE to 1) the default core is
selected (current the Eulerian Mass core, em). For example to set it for WRF-NMM core,
“setenv WRF_NMM_CORE to 1” command should be issued. The makefile in the top-
level directory directs the rest of the build, accomplished as a set of recursive invocations
of make in the subdirectories of WRF. Most of these makefiles include the configure.wrf
file in the top-level directory. The order of a complete build is as follows:

1. Make in frame directory

a. make in external/io_netcdf to build NetCDF implementation of I/O API

b. make in RSL or RSL_LITE directory to build communications layer
(DM_PARALLEL only)

c. make in external/esmf_time_f90 directory to build ESMF time manager
library

d. make in other external directories as specified by “external:” target in the
configure.wrf file

2. Make in the tools directory to build the program that reads the Registry/Registry
file and auto-generates files in the inc directory

3. Make in the frame directory to build the WRF framework specific modules

4. Make in the share directory to build the non-core-specific mediation layer
routines, including WRF I/O modules that call the I/O API

5. Make in the phys directory to build the WRF model layer routines for physics
(non core-specific)

6. Make in the dyn_core directory for core-specific mediation-layer and model-layer
subroutines



 WRF-NMM Tutorial 6-4

7. Make in the main directory to build the main program(s) for WRF and link to
create executable file(s) depending on the build case that was selected as the
argument to the compile script (e.g. compile em_real or compile nmm_real)

8. Symbolic link executable files in the main directory to the run directory for the
specific case and to the directory named “run”

Source files (.F and, in some of the external directories, .F90) are preprocessed to
produce .f files, which are input to the compiler. As part of the preprocessing, Registry-
generated files from the inc directory may be included. Compiling the .f files results in
the creation of object (.o) files that are added to the library main/libwrflib.a. The linking
step produces the wrf.exe executable and other executables, depending on the case
argument to the compile command: real_nmm.exe (a preprocessor for real-data cases for
the WRF-NMM) or for the WRF-ARW, real_em.exe (a preprocessor for real-data cases
for the WRF-ARW) or ideal.exe (a preprocessor for idealized cases for the WRF-ARW),
and the ndown.exe program, for one-way nesting of real-data cases.

The .o files and .f files from a compile are retained until the next invocation of the clean
script. The .f files provide the true reference for tracking down run time errors that refer
to line numbers or for sessions using interactive debugging tools such as dbx or gdb.

Registry

Tools for automatic generation of application code from user-specified tables provide
significant software productivity benefits in development and maintenance of large
applications such as WRF. Some 30-thousand lines of WRF code are automatically
generated from a user-edited table, called the Registry. The Registry provides a high-
level single-point-of-control over the fundamental structure of the model data, and thus
provides considerable utility for developers and maintainers. It contains lists describing
state data fields and their attributes: dimensionality, binding to particular solvers,
association with WRF I/O streams, communication operations, and run time
configuration options (namelist elements and their bindings to model control structures).
Adding or modifying a state variable to WRF involves modifying a single line of a single
file; this single change is then automatically propagated to scores of locations in the
source code the next time the code is compiled.

The WRF Registry has two components: the Registry file, and the Registry program.

The Registry file is located in the Registry directory and contains the entries that direct
the auto-generation of WRF code by the Registry program. There may be more than one
Registry in this directory, with filenames such as Registry.EM (for builds using the
Eulerian Mass core, ARW) and Registry.NMM (for builds using the NMM core). The
WRF Build Mechanism copies one of these to the file Registry/Registry and this file is
used to direct the Registry program. The syntax and semantics for entries in the Registry
are described in detail in “WRF Tiger Team Documentation: The Registry (DRAFT)” on
http://www.mmm.ucar.edu/wrf/WG2/Tigers/Registry/.



 WRF-NMM Tutorial 6-5

The Registry program is distributed as part of WRF in the tools directory. It is built
automatically (if necessary) when WRF is compiled. The executable file is tools/registry.
This program reads the contents of the Registry file, Registry/Registry, and generates
files in the inc directory. These files are included by other WRF source files when they
are compiled. Additional information on these is provided as an appendix to “WRF Tiger
Team Documentation: The Registry (DRAFT)”. The Registry program itself is written in
C. The source files and makefile are in the tools directory.

Figure 1: When the user compiles WRF, the Registry Program reads Registry/Registry,
producing auto-generated sections of code that are stored in files in the inc directory.
These are included into WRF using the CPP preprocessor and the FORTRAN compiler.

In addition to the WRF model itself, the Registry/Registry file is used to build the
accompanying preprocessors such as real_em.exe or real_nmm.exe (for real data) or
ideal.exe (for WRF-ARW ideal simulations), and the ndown.exe program (used for the
WRF-ARW one-way, off-line nesting).

I/O Applications Program Interface (I/O API)

The software that implements WRF I/O, like the software that implements the model in
general, is organized hierarchically, as a “software stack”
(http://www.mmm.ucar.edu/wrf/WG2/Tigers/IOAPI/IOStack.html) . From top (closest to



 WRF-NMM Tutorial 6-6

the model code itself) to bottom (closest to the external package implementing the I/O),
the I/O stack looks like this:

• Domain I/O (operations on an entire domain)
• Field I/O (operations on individual fields)
• Package-neutral I/O API
• Package-dependent I/O API (external package)

There is additional information on the WRF I/O software architecture on
http://www.mmm.ucar.edu/wrf/WG2/IOAPI/IO_files/v3_document.htm. The lower-
levels of the stack are described in the I/O and Model Coupling API specification
document on http://www.mmm.ucar.edu/wrf/WG2/Tigers/IOAPI/index.html.

Timekeeping

Starting times, stopping times, and time intervals in WRF are stored and manipulated as
Earth System Modeling Framework (ESMF, http://www.esmf.ucar.edu) time manager
objects. This allows exact representation of time instants and intervals as integer numbers
of years, months, hours, days, minutes, seconds, and/or fractions of a second (numerator
and denominator are specified separately as integers). All time arithmetic involving these
objects is performed exactly, without drift or rounding, even for fractions of a second.

The WRF implementation of the ESMF Time Manger is distributed with WRF in the
external/esmf_time_f90 directory. This implementation is entirely Fortran90 (as opposed
to the ESMF implementation that required C++) and it is conformant to the version of the
ESMF Time Manager API that was available in 2003 (the API has changed in later
versions of ESMF and an update will be necessary for WRF once the ESMF
specifications and software have stabilized). The WRF implementation of the ESMF
Time Manager supports exact fractional arithmetic (numerator and denominator
explicitly specified and operated on as integers), a feature needed by models operating at
very high resolutions, but deferred in 2003 since it was not needed for models running at
more coarse resolutions.

WRF source modules and subroutines that use the ESMF routines do so by use-
association of the top-level ESMF Time Manager module, esmf_mod:

 USE esmf_mod

The code is linked to the library file libesmf_time.a in the external/esmf_time_f90
directory.

ESMF timekeeping is set up on a domain-by-domain basis in the routine
setup_timekeeping (share/set_timekeeping.F). Each domain keeps its own clocks,
alarms, etc. – since the time arithmetic is exact there is no problem with clocks getting
out of synchronization.



 WRF-NMM Tutorial 6-7

Software Documentation

Detailed and comprehensive documentation aimed at WRF software developers is being
developed by the WRF Training and Documentation Team, also known as the WRF
Tiger Team (http://www.mmm.ucar.edu/wrf/WG2/Tigers).

Also, detailed subroutine-by-subroutine documentation has been implemented and is
being maintained on-line. There are two web-based code browsing utilities available with
WRF. One is a browser developed at the University of Oklahoma; the other is a code
browser developed as part of the WRF project. These can be found on
http://www.mmm.ucar.edu/wrf/WG2/software_2.0, along with short descriptions of the
tools. The contents of these web pages are generated automatically from the WRF source
code.

Portability and Performance

WRF-ARW is supported on the following platforms:

Vendor Hardware O.S. Compiler
Cray Inc. X1 UNICOS vendor

Alpha Tru64 vendor
Linux Intel

HP/Compaq
IA-64 (Intel)

HPUX vendor
IBM SP Power-x AIX vendor

IA-64 (Intel) Linux IntelSGI
MIPS Irix vendor

Sun UltraSPARC Solaris vendor
various IA-32/AMD 32 Linux Intel/PGI
various IA-64/Opteron Linux Intel/PGI

WRF-NMM is currently supported on the following platforms:

Vendor Hardware O.S. Compiler
IBM SP Power-x AIX vendor
SGI MIPS IRIX vendor

HP/COMPAQ/DEC Alpha Tru64 vendor
Various IA-32 LINUX PGI
Various Opteron LINUX PGI

Ports are in progress to other systems. Contact wrfhelp@ucar.edu for additional
information.

For benchmark data, see http://www.mmm.ucar.edu/wrf/bench.


